Skip to main content

Advertisement

Log in

Biobutanol preparation through sugar-rich biomass by Clostridium saccharoperbutylacetonicum conversion using ZnO nanoparticle catalyst

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biobutanol is a renewable, less polluting, and potentially viable alternative fuel to conservative gasoline. Bacterium activation of Clostridium saccharoperbutylacetonicum is one of the essential steps in butanol fabrication used. Among other various techniques, high-temperature tremor at 100 °C for 2 min was initiated to be the best technique for initiation of Clostridium saccharoperbutylacetonicum bacterium applicable as an inoculum in butanol preparation. Estimation of the efficiency of Clostridium saccharoperbutylacetonicum butanol production from synthetic medium containing 80 g/l of glucose at room temperature showed that Clostridium saccharoperbutylacetonicum gave the maximum butanol concentration (10.59 g/l). Three (3) agronomic raw materials, sorghum juice, sugarcane juice, and sugarcane molasses containing 60 g/l of whole sugar, which is involved in glucose required, were used as butanol manufacture mean by bacterium used. Its PB values were 1.50, 4.77, and 7.65 g/l, respectively. Furthermore, when sugarcane molasses was mixed with P2 medium (without glucose), and ZnO nanoparticles were added as a catalyst, the PB value was enhanced by a factor of 11.58 g/l. The findings revealed that sugarcane molasses has the greatest potential for use as a raw material in the production of biobutanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gonçalves RA, Toledo RP, Joshi N, Berengue OM (2021) Green synthesis and applications of ZnO and TiO2 nanostructures. Mol 26:2236. https://doi.org/10.3390/MOLECULES26082236

    Article  Google Scholar 

  2. Ahmad S, Munir S, Zeb N et al (2019) Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. Int J Nanomedicine 14:5087. https://doi.org/10.2147/IJN.S200254

    Article  Google Scholar 

  3. Raafat M, El-Sayed ASA, El-Sayed MT (2021) Biosynthesis and anti-mycotoxigenic activity of Zingiber officinale Roscoe-derived metal nanoparticles. Mol 26:2290. https://doi.org/10.3390/MOLECULES26082290

    Article  Google Scholar 

  4. Awan S, Shahzadi K, Javad S et al (2021) A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleraceavar itali Clostridium. J Saudi SocAgricSci 20:18–24. https://doi.org/10.1016/J.JSSAS.2020.10.003

    Article  Google Scholar 

  5. Prashanth GK, Prashanth PA, Nagabhushana BM et al (2017) Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels. 46:968–979. https://doi.org/10.1080/2169140120171351982

  6. Niculescu R, Clenci A, Iorga-Siman V (2019) Review on the use of diesel–biodiesel–alcohol blends in compression ignition engines. Energies 12:1194. https://doi.org/10.3390/EN12071194

    Article  Google Scholar 

  7. Abbasian R, Jafarizadeh-Malmiri H (2020) Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Open Agric 5:761–767. https://doi.org/10.1515/OPAG-2020-0074

    Article  Google Scholar 

  8. Suresh T, Sivarajasekar N, Balasubramani K (2021) Enhanced ultrasonic assisted biodiesel production from meat industry waste (pig tallow) using green copper oxide nanocatalyst: comparison of response surface and neural network modelling. Renew Energy 164:897–907. https://doi.org/10.1016/J.RENENE.2020.09.112

    Article  Google Scholar 

  9. Singh R, Hano C, Nath G, Sharma B (2021) Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomol 11:299. https://doi.org/10.3390/BIOM11020299

    Article  Google Scholar 

  10. Mosquera-Sánchez LP, Arciniegas-Grijalba PA, Patiño-Portela MC et al (2020) Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatal Agric Biotechnol 25:101579. https://doi.org/10.1016/J.BCAB.2020.101579

    Article  Google Scholar 

  11. Frattini D, Karunakaran G, Cho E-B, Kwon Y (2021) Sustainable syntheses and sources of nanomaterials for microbial fuel/electrolysis cell applications: an overview of recent progress. Process 9:1221. https://doi.org/10.3390/PR9071221

    Article  Google Scholar 

  12. Dejen KD, Zereffa EA, Murthy HCA, Merga A (2020) Synthesis of ZnO and ZnO/PVA nanocomposite using aqueous Moringa oleifeira leaf extract template: antibacterial and electrochemical activities. Rev Adv Mater Sci 59:464–476. https://doi.org/10.1515/RAMS-2020-0021

    Article  Google Scholar 

  13. Rao AVRK, Dudhe P, Chelvam V (2021) Role of oxygen defects in basicity of Se doped ZnO nanocatalyst for enhanced triglyceride transesterification in biodiesel production. CatalCommun 149:106258. https://doi.org/10.1016/J.CATCOM.2020.106258

    Article  Google Scholar 

  14. Jeyakumar N, Narayanasamy B, Balasubramanian D, Viswanathan K (2020) Characterization and effect of Moringa oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel 281:118614. https://doi.org/10.1016/J.FUEL.2020.118614

    Article  Google Scholar 

  15. Sivaprakash G, Mohanrasu K, Ravindran B et al (2020) Integrated approach: Al2O3-CaO nanocatalytic biodiesel production and antibacterial potential silver nanoparticle synthesis from Pedalium murex extract. J King Saud Univ - Sci 32:1503–1509. https://doi.org/10.1016/J.JKSUS.2019.12.004

    Article  Google Scholar 

  16. Gowthambabu V, Balamurugan A, Dhivyabharathy R et al (2021) ZnO nanoparticles as efficient sunlight driven photocatalyst prepared by solution combustion method involved lime juice as biofuel. Spectrochim Acta Part A Mol Biomol Spectrosc 258:119857. https://doi.org/10.1016/J.SAA.2021.119857

    Article  Google Scholar 

  17. Inamuddin Shakeel N, Imran Ahamed M et al (2020) Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-61831-4

    Article  Google Scholar 

  18. Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–20. https://doi.org/10.1016/j.procbio.2012.06.004

    Article  Google Scholar 

  19. Kpodo F, Agbenorhevi JK, Alba K, Smith AM, Morris GA, Kontogiorgos V (2019) Structure and physicochemical properties of Ghanaian grewia gum. Int J Biol Macromol 122:866–72. https://doi.org/10.1016/j.ijbiomac.2018.10.220

    Article  Google Scholar 

  20. Carnachan SM, Bell TJ, Hinkley SFR, Sims IM (2019) Polysaccharides from New Zealand native plants: a review of their structure, properties, and potential applications. Plants 8:163. https://doi.org/10.3390/plants8060163

    Article  Google Scholar 

  21. Irfan M, Munir H, Ismail H (2021) Moringa oleifera gum based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSA. Biomater Res 25:1–8. https://doi.org/10.1186/S40824-021-00219-5

    Article  Google Scholar 

  22. Nurman S, Yulia R, Irmayanti I et al (2021) Optimizing anti-inflammatory activities of arabica coffee ground (Coffea arabica L.) nanoparticle gel. Jundishapur J Nat Pharm Prod 162:16. https://doi.org/10.5812/JJNPP.102673

    Article  Google Scholar 

  23. Asemani M, Anarjan N (2019) Green synthesis of copper oxide nanoparticles using Juglans regia leaf extract and assessment of their physico-chemical and biological properties. Green Process Synth 8:557–567. https://doi.org/10.1515/GPS-2019-0025

    Article  Google Scholar 

  24. Baskaran P, Nisha KD, Harish S et al (2020) (2020) High-performance electrocatalytic and cationic substitution in Cu2ZnSnS4 as a low-cost counter electrode for Pt-free dye-sensitized solar cells. J Mater Sci 566(56):4135–4150. https://doi.org/10.1007/S10853-020-05421-9

    Article  Google Scholar 

  25. Sarli S, Kalani MR, Moradi A (2020) A potent and safer anticancer and antibacterial taxus-based green synthesized silver nanoparticle. Int J Nanomed 15:3791. https://doi.org/10.2147/IJN.S251174

    Article  Google Scholar 

  26. Jameel MS, Aziz AA, Dheyab MA (2020) Green synthesis: proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Process Synth 9:386–398. https://doi.org/10.1515/GPS-2020-0041

    Article  Google Scholar 

  27. Zhao X, Davis LM, Lou X et al (2021) Study of the crystal structure of SnS thin films by atomic layer deposition. AIP Adv 11:035144. https://doi.org/10.1063/5.0032782

    Article  Google Scholar 

  28. Karmakar G, Ghosh P, Kohli K et al (2020) Chemicals from vegetable oils, fatty derivatives, and plant biomass. ACS Symp Ser 1347:1–31. https://doi.org/10.1021/BK-2020-1347.CH001

    Article  Google Scholar 

  29. Patil A, Baral S, Dhanke P (2021) Hydrodynamic cavitation for process intensification of biodiesel synthesis-a review. Curr Res Green Sustain Chem 4:100144. https://doi.org/10.1016/J.CRGSC.2021.100144

    Article  Google Scholar 

  30. Asif S, Mubashir M, Klemeš JJ et al (2021) Enhanced production of non-edible Xanthium spinosum-based biodiesel using waste biomass under dynamic conditions. Biomass Convers Biorefinery 2021:1–12. https://doi.org/10.1007/S13399-021-01804-3

    Article  Google Scholar 

  31. Soudagar MEM, Nik-Ghazali NN, AbulKalam M et al (2018) The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics. Energy Convers Manag 178:146–177. https://doi.org/10.1016/J.ENCONMAN.2018.10.019

    Article  Google Scholar 

  32. Fang J, Gao B, Chen J, Zimmerman AR (2015) Hydrochars derived from plant biomass under various conditions: characterization and potential applications and impacts. J Chem Eng 267:253–259. https://doi.org/10.1016/j.cej.2015.01.026

    Article  Google Scholar 

  33. John CB, Solamalai AR, Jambulingam R, Balakrishnan D (2020) Estimation of fuel properties and characterization of hemp biodiesel using spectrometric techniques. https://doi.org/10.1080/1556703620201842559

  34. Shalini P, Raman LA, Santhanakrishnan S et al (2021) A review on recent trends in the microbial production of biodiesel. AIP ConfProc 2396:020007. https://doi.org/10.1063/5.0066418

    Article  Google Scholar 

  35. Qiu Y, Xing H, Sun S et al (2021) Experimental study of the effects of vent area and ignition position on internal and external pressure characteristics of venting explosion. Fuel 300

  36. Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE (2013) Biomass for thermochemical conversion: targets and challenges. Front Plant Sci 4:1–20. https://doi.org/10.3389/fpls.2013.00218

    Article  Google Scholar 

  37. Basafa M, Hawboldt K (2021) A review on sources and extraction of phenolic compounds as precursors for bio-based phenolic resins. Biomass Convers Biorefinery 2021:1–13. https://doi.org/10.1007/S13399-021-01408-X

    Article  Google Scholar 

  38. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. J ChemEng 283:789–805. https://doi.org/10.1016/j.cej.2015.08.014

    Article  Google Scholar 

  39. Sharma S, Basu S, Shetti NP, Aminabhavi TM (2020) Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy. Sci Total Environ 713:136633. https://doi.org/10.1016/j.scitotenv.2020.136633

    Article  Google Scholar 

  40. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 18(4):1049–1072. https://doi.org/10.1007/s10311-020-00999-7

    Article  Google Scholar 

  41. Sharma S, Kundu A, Basu S, Shetti NP, Aminabhavi TM (2020) Sustainable environmental management and related biofuel technologies. J Environ Manage 273:111096. https://doi.org/10.1016/j.jenvman.2020.111096

    Article  Google Scholar 

  42. Sharma S, Basu S, Shetti NP, Kamali M, Walvekar P, Aminabhavi TM (2020) Waste-to-energy nexus: a sustainable development. Environ Pollut 27:115501. https://doi.org/10.1016/j.envpol.2020.115501

    Article  Google Scholar 

  43. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Sustainable energy from waste organic matters via efficient microbial processes. Sci Total Environ 722:137927. https://doi.org/10.1016/j.scitotenv.2020.137927

    Article  Google Scholar 

  44. Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut 276:116731. https://doi.org/10.1016/j.envpol.2021.116731

    Article  Google Scholar 

  45. Sampath P, Reddy KR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV (2020) Biohydrogen production from organic waste–a review. Chem Eng Technol 43(7):1240–1248. https://doi.org/10.1002/ceat.201900400

    Article  Google Scholar 

  46. Jung S, Shetti NP, Reddy KR, Nadagouda MN, Park YK, Aminabhavi TM, Kwon EE (2021) Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks–a review. Energy Convers Manag 236:114038. https://doi.org/10.1016/j.enconman.2021.114038

    Article  Google Scholar 

  47. Velvizhi G, Balakumar K, Shetti NP, Ahmad E, Pant KK, Aminabhavi TM (2022) Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy. Bioresour Technol 343:126151. https://doi.org/10.1016/j.biortech.2021.126151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Krishnaraj.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, S., Tesfaye, J., Gudata, L. et al. Biobutanol preparation through sugar-rich biomass by Clostridium saccharoperbutylacetonicum conversion using ZnO nanoparticle catalyst. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02424-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02424-1

Keywords

Navigation