Skip to main content

Advertisement

Log in

Conversion of Cellulose into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cellulose samples with different crystallinities (33–85%) were prepared by treating a commercial cellulose (crystalline, 85%) with phosphoric acid under different conditions. Supported Fe, Co, Ni, Pd, Pt, Rh, Ru, Ir, Ag, and Au catalysts were examined for the conversion of cellulose with a crystallinity of 33% in water medium in the presence of hydrogen, and Ru was found to be the most effective catalyst for the formation of sorbitol. We demonstrated that carbon nanotubes (CNTs) were the most efficient support of Ru for cellulose conversion, and the mean size of Ru nanoparticles over CNT was ~8.8 nm. NH3-TPD and H2-TPD characterizations suggest that plenty of acid sites and unique hydrogen species over the Ru/CNT are important for sorbitol formation through hydrolysis and hydrogenation of cellulose. A 40% yield of hexitols (including 36% of sorbitol) could be achieved over the Ru/CNT catalyst for the conversion of the commercial cellulose (crystalline, 85%), and this yield was the highest one reported to date for the direct conversion of cellulose into sugar alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 44:3358

    Article  CAS  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  3. Dhepe PL, Fukuoka A (2007) Catal Surv Asia 11:186

    Article  CAS  Google Scholar 

  4. Dhepe PL, Fukuoka A (2008) ChemSusChem 1:969

    Article  CAS  Google Scholar 

  5. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484

    Article  CAS  Google Scholar 

  6. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597

    Article  CAS  Google Scholar 

  7. Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) ChemSusChem 1:283

    Article  CAS  Google Scholar 

  8. Stöcker M (2008) Angew Chem Int Ed 47:9200

    Article  Google Scholar 

  9. Fleming K, Gray DG, Matthews S (2001) Chem Eur J 7:1831

    Article  CAS  Google Scholar 

  10. Kamm B (2007) Angew Chem Int Ed 46:5056

    Article  CAS  Google Scholar 

  11. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  12. Huber GW, Cortright RD, Dumesic JA (2004) Angew Chem Int Ed 43:1549

    Article  CAS  Google Scholar 

  13. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446

    Article  CAS  Google Scholar 

  14. Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y (2006) J Am Chem Soc 128:8714

    Article  CAS  Google Scholar 

  15. Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161

    Article  CAS  Google Scholar 

  16. Luo C, Wang S, Liu H (2007) Angew Chem Int Ed 46:7636

    Article  CAS  Google Scholar 

  17. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Angew Chem Int Ed 47:8510

    Article  CAS  Google Scholar 

  18. Chen P, Zhang HB, Lin GD, Hong Q, Tsai KR (1997) Carbon 35:1495

    Article  CAS  Google Scholar 

  19. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) Biomacromolecules 7:644

    Article  CAS  Google Scholar 

  20. Sasaki M, Adschiri T, Arai K (2004) AIChE J 50:192

    Article  CAS  Google Scholar 

  21. Hon DNS, Yan H (2001) J Appl Polym Sci 81:2649

    Article  CAS  Google Scholar 

  22. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) J Am Chem Soc 125:14300

    Article  CAS  Google Scholar 

  23. Wood TM (1988) Methods Enzymol 160:19

    Article  CAS  Google Scholar 

  24. Wood TM, Bhat KM (1988) Methods Enzymol 160:87

    Article  CAS  Google Scholar 

  25. Sharrock KRJ (1988) Biochem Biophys Methods 17:81

    Article  CAS  Google Scholar 

  26. Ruan D, Zhang L, Mao Y, Zeng M, Li X (2004) J Memb Science 241:265

    Article  CAS  Google Scholar 

  27. Oh SY, Yoo DI, Shin Y, Seo G (2005) Carbohydr Res 340:417

    Article  CAS  Google Scholar 

  28. Colom X, Carrillo F (2002) Eur Polym J 38:2225

    Article  CAS  Google Scholar 

  29. Pan J, Li J, Wang C, Yang Z (2007) React Kinet Catal Lett 90:233

    Article  CAS  Google Scholar 

  30. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc, Eden Prairie

    Google Scholar 

  31. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:12787

    Article  CAS  Google Scholar 

  32. Yoon B, Wai CM (2005) J Am Chem Soc 127:17174

    Article  CAS  Google Scholar 

  33. Zhang HB, Dong X, Lin GD, Liang XL, Li HY (2005) Chem Commun 40:5094

    Article  Google Scholar 

  34. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507

    Article  CAS  Google Scholar 

  35. Pan X, Bao X (2008) Chem Couumn 6271

  36. Kang J, Zhang S, Zhang Q, Wang Y (2009) Angew Chem Int Ed 48:2565

    Article  CAS  Google Scholar 

  37. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20625310, 20773099 and 20873110), the National Basic Program of China (2010CB732303 and 2005CB221408), and the Program for New Century Excellent Talents in Fujian Province (to Q.Z.). We thank Profs. H. B. Zhang and G. D. Lin for providing CNT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Tan, X., Fang, W. et al. Conversion of Cellulose into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst. Catal Lett 133, 167–174 (2009). https://doi.org/10.1007/s10562-009-0136-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0136-3

Keywords

Navigation