Skip to main content

Fundamentals of Scaffolds Fabrication Using Low Temperature Additive Manufacturing

  • Chapter
  • First Online:
Biomaterials for Musculoskeletal Regeneration

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

In the last two decades, additive manufacturing (AM) has made significant progress towards the fabrication of biomaterials and tissue-engineering constructs. One direction of research is focused on the development of mechanically stable implants with patient-specific sizes/shapes and another direction has been to fabricate tissue-engineered scaffolds with designed porous architecture to facilitate vascularization. Among AM techniques, three dimensional powder printing (3DPP) is suitable for the fabrication of bone related prosthetic devices, while three dimensional plotting (3DPL) is based on the extrusion of biopolymers to create artificial tissues. The central theme of this chapter is to discuss the critical roles played by the binder and powder properties together with the interplay among processing parameters in the context of the physics of binder-material interaction for the fabrication of implants with predefined architecture and structural complexity. Summarising, this chapter encompasses the process and the underlying governing parameters of low temperature additive manufacturing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasireddi, R., Basu, B.: Conceptual design of three-dimensional scaffolds for bone tissue engineering. Rapid Prototyping J. 21 (2015)

    Google Scholar 

  2. Schubert, C., van Langeveld, M.C., Donoso, L.A.: Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. (2013): bjophthalmol-2013

    Google Scholar 

  3. Vaezi, M., Seitz, H., Yang, S.: A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013)

    Article  Google Scholar 

  4. PWC. 3D printing and the new shape of industrial manufacturing. In: PWC, editor (2014)

    Google Scholar 

  5. Berger, R.: Additive manufacturing: a game changer for the manufacturing industry. In: Berger, R., (ed.). Munich (2013)

    Google Scholar 

  6. Lantada, A.D., Morgado, P.L.: Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu. Rev. Biomed. Eng. 14, 73–96 (2012)

    Article  Google Scholar 

  7. Yeong, W.-Y., Chua, C.-K., Leong, K.-F., Chandrasekaran, M.: Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22(12), 643–652 (2004)

    Article  Google Scholar 

  8. Kalejs, M., von Segesser, L.K.: Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac. Surg. 8(2), 182–186 (2009)

    Article  Google Scholar 

  9. FDA.: Paving the Way for Personalized Medicine. In: Hamburg, M.A. (ed.) FDA, USA (2013)

    Google Scholar 

  10. Zhao, S., Zhu, M., Zhang, J., Zhang, Y., Liu, Z., Zhu, Y., Zhang, C.: Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J. Materials Chemistry B 2(36), 6106–6118 (2014)

    Article  Google Scholar 

  11. Klammert, U., Gbureck, U., Vorndran, E., Rödiger, J., Meyer-Marcotty, P., Kübler, A.C.: 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J. Cranio-Maxillofacial Surg. 38, 565–570 (2010)

    Article  Google Scholar 

  12. Wang, J., Yang, M., Zhu, Y., Wang, L., Tomsia, A.P., Mao, C.: Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv. Mater. (2014)

    Google Scholar 

  13. Shim, J.-H., Kim, S.E., Park, J.Y., Kundu, J., Kim, S.W., Kang, S.S., Cho, D.-W.: Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Tissue Eng. Part A (2014)

    Google Scholar 

  14. Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923), 59–63 (2009)

    Article  Google Scholar 

  15. Markets, M.A.: Additive Manufacturing Market, by Application (…), forecast 2012–2017. In: Markets, M.A. (2013)

    Google Scholar 

  16. Angrish, A.: 3D printing in biomedical applications: overview and opportunities. MED DEVICE ONLINE (2013)

    Google Scholar 

  17. Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomäki, M.: A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40(4), 268–280 (2008)

    Article  Google Scholar 

  18. Webb, P.A.: A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J. Med. Eng. Technol. 24(4), 149–153 (2000)

    Article  Google Scholar 

  19. Kolesky, D.B., Truby, R.L., Gladman, A.S., Busbee, T.A., Homan, K.A., Lewis, J.A.: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26(19), 3124–3130 (2014)

    Article  Google Scholar 

  20. Liu, F.-H.: Fabrication of bioceramic bone scaffolds for tissue engineering. J. Mater. Eng. Perform. 23(10), 3762–3769 (2014)

    Article  Google Scholar 

  21. Liu, F.-H.: Synthesis of biomedical composite scaffolds by laser sintering: mechanical properties and in vitro bioactivity evaluation. Appl. Surf. Sci. 297, 1–8 (2014)

    Article  Google Scholar 

  22. Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupt, R.: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37(15), 3107–3116 (2002)

    Article  Google Scholar 

  23. Huang, T., Qu, X., Liu, J., Chen, S.: 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices 16(1), 127–132 (2014)

    Article  Google Scholar 

  24. Rankin, T.M., Giovinco, N.A., Cucher, D.J., Watts, G., Hurwitz, B., Armstrong, D.G.: Three-dimensional printing surgical instruments: are we there yet? J. Surg. Res. 189(2), 193–197 (2014)

    Article  Google Scholar 

  25. Chantarapanich, N., Puttawibul, P., Sucharitpwatskul, S., Jeamwatthanachai, P., Inglam, S., Sitthiseripratip, K.: Scaffold library for tissue engineering: a geometric evaluation. Comput. Math. Methods Med. 2012, 1–14 (2012)

    Article  Google Scholar 

  26. El-Ayoubi, R., Eliopoulos, N., Diraddo, R., Galipeau, J., Yousefi, A.-M.: Design and fabrication of 3D porous scaffolds to facilitate cell-based gene therapy. Tissue Eng. Part A 14, 1037–1048 (2004)

    Article  Google Scholar 

  27. Tripathi, G., Basu, B.: A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram. Int. 38(1), 341–349 (2012)

    Article  Google Scholar 

  28. Holmes, R.: Bone regeneration within a coralline hydroxyapatite implant. Plast. Reconstr. Surg. 63, 626–633 (1979)

    Article  Google Scholar 

  29. Ravaglioli, A., Krajewski, A.: Implantable porous bioceramics. Mater. Sci. Forum 250, 221–230 (1997)

    Article  Google Scholar 

  30. Hollister, S.: Engineering craniofacial scaffolds. Orthod. Craniofac. Res. 8(3), 162–173 (2005)

    Article  Google Scholar 

  31. Damien, E., Hing, K., Saeed, S., Revell, P.: A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J. Biomed. Mater. Res. A 66, 241–246 (2003)

    Article  Google Scholar 

  32. Zhang, C., Wang, J., Feng, H., Lu, B., Song, Z., Zhang, X.: Replacement of segmental bone defects using porous bioceramic cylinders: a biomechanical and X-ray diffraction study. J. Biomed. Mater. Res. 54, 407–411 (2001)

    Article  Google Scholar 

  33. ElGhannam, A.: Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J. Biomed. Mater. Res. A 69, 490–501 (2004)

    Article  Google Scholar 

  34. Hing, K., SB, S.M., Bonfield, W.: Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 10, 135–145 (1999)

    Article  Google Scholar 

  35. Basu, B., Swain, S.K., Sarkar, D.: Cryogenically cured hydroxyapatite-gelatin nanobiocomposite with interconnected porosity as a suitable scaffold for adsorption/delivery of BSA protein of up to 60 %. RSC Adv. R. Soc. Chem. 3, 14622–14633 (2013)

    Article  Google Scholar 

  36. Toibah, A., Iis, S.: Recent progress on the development of porous bioactive calcium phosphate for biomedical applications. Recent Pat. Biomed. Eng. 1, 213–229 (2008)

    Article  Google Scholar 

  37. Lee, Y., Seol, Y., Lim, Y., Kim, S., Han, S., Rhyu, I., Baek, S., Heo, S., Choi, J., Klokkevold, P., et al.: Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J. Biomed. Mater. Res. 54, 216–223 (2001)

    Article  Google Scholar 

  38. Kyriakidou, K., Lucarini, G., Zizzi, A., Salvolini, E., Mattioli Belmonte, M., Mollica, F., Gloria, A., Ambrosio, L.: Dynamic co-seeding of osteoblast and endothelial cells on 3D polycaprolactone scaffolds for enhanced bone tissue engineering. J. Bioact. Compatible Polym. 23(3), 227–243 (2008)

    Article  Google Scholar 

  39. Chen, Y., Ng, C., Wang, Y.: Generation of an STL file from 3D measurement data with user-controlled data reduction. Int. J. Adv. Manuf. Technol. 15(2), 127–131 (1999)

    Article  Google Scholar 

  40. Hutmacher, D.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000)

    Article  Google Scholar 

  41. Sachlos, E., Czernuszka, J.: Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cells Mater. 5, 29–39 (2003)

    Google Scholar 

  42. Abdullah, J.: Hassan A, pp. 547–561. Principles and Applications. Bone Grafts and Bone Substitutes, Rapid Prototyping in Orthopaedics (2005)

    Google Scholar 

  43. Garrett, B.: 3D printing: new economic paradigms and strategic shifts. Global Policy 5(1), 70–75 (2014)

    Article  Google Scholar 

  44. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.: Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnol. 21, 157–161 (2003)

    Article  Google Scholar 

  45. Melchels, F.P.W., Feijen, J., Grijpma, D.W.: A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)

    Article  Google Scholar 

  46. Hoque, M.E., Chuan, Y.L., Pashby, I.: Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 97(2), 83–93 (2012)

    Article  Google Scholar 

  47. Giannitelli, S.M., Accoto, D., Trombetta, M., Rainer, A.: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 10(2), 580–594 (2014)

    Article  Google Scholar 

  48. Giannatsis, J., Dedoussis, V.: Additive fabrication technologies applied to medicine and health care: a review. Int. J. Adv. Manuf. Technol. 40(1–2), 116–127 (2009)

    Article  Google Scholar 

  49. Ad, L., Pl, M.: Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu. Rev. Biomed. Eng. 14, 73–96 (2012)

    Article  Google Scholar 

  50. Forgacs, G., Biofabrication, S.W.: Micro- and Nano-fabrication, Printing, Patterning and Assemblies (Micro and Nano Technologies): Elsevier Amsterdam (2013)

    Google Scholar 

  51. Gaytan, S.M., Murr, L.E., Martinez, E., Martinez, J.L., Machado, B.I., Ramirez, D.A., Medina, F., Collins, S., Wicker, R.B.: Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metallurgical and materials transactions A 41(12), 3216–3227 (2010)

    Article  Google Scholar 

  52. Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B.: Microstructure and mechanical behavior of Ti6Al4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2(1), 20–32 (2009)

    Article  Google Scholar 

  53. Palmquist, A., Snis, A., Emanuelsson, L., Browne, M., Thomsen, P.: Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: experimental studies in sheep. J. Biomaterials Appl. (2011)

    Google Scholar 

  54. Le Guéhennec, L., Soueidan, A., Layrolle, P., Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23(7), 844–854 (2007)

    Article  Google Scholar 

  55. Hernandez, J., Li, S.J., Martinez, E., Murr, L.E., Pan, X.M., Amato, K.N., Cheng, X.Y., Yang, F., Terrazas, C.A., Gaytan, S.M.: Microstructures and hardness properties for β-Phase Ti–24Nb–4Zr–7.9 Sn alloy fabricated by electron beam melting. J. Mater. Sci. Technol. 29(11), 1011–1017 (2013)

    Article  Google Scholar 

  56. Luca, F., Emanuele, M., Pierfrancesco, R., Alberto, M., Simon, H., Konrad, W.: Ductility of a Ti6Al4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J. 16(6), 450–459 (2010)

    Article  Google Scholar 

  57. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J.V., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti6Al4V. Acta Mater. 58(9), 3303–3312 (2010)

    Article  Google Scholar 

  58. Calvert, P.: Inkjet printing for materials and devices. Chem. Mater. 13(10), 3299–3305 (2001)

    Article  Google Scholar 

  59. Butscher, A., Bohner, M., Roth, C., Ernstberger, A., Heuberger, R., Doebelin, N., Rudolf von Rohr, P., Müller, R.: Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 8(1), 373–385 (2012)

    Article  Google Scholar 

  60. Derby, B.: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)

    Article  Google Scholar 

  61. Lanzetta, M., Sachs, E.: Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyping J. 9(3), 157–166 (2003)

    Article  Google Scholar 

  62. Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., Müller, R.: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7(3), 907–920 (2011)

    Article  Google Scholar 

  63. Lam, C.X.F., Mo, X., Teoh, S.-H., Hutmacher, D.: Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng., C 20(1), 49–56 (2002)

    Article  Google Scholar 

  64. Khalyfa, A., Vogt, S., Weisser, J., Grimm, G., Rechtenbach, A., Meyer, W., Schnabelrauch, M.: Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 18(5), 909–916 (2007)

    Article  Google Scholar 

  65. Landers, R., Mülhaupt, R.: Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol. Mater. Eng. 282(1), 17–21 (2000)

    Article  Google Scholar 

  66. Butscher, A., Bohner, M., Doebelin, N., Hofmann, S., Müller, R.: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 9(11), 9149–9158 (2013)

    Article  Google Scholar 

  67. Xiong, Y., Qian, C., Sun, J.: Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent. Mater. J. 31(5), 815–820 (2012)

    Article  Google Scholar 

  68. Suwanprateeb, J., Chumnanklang, R.: Three-dimensional printing of porous polyethylene structure using water-based binders. J. Biomed. Mater. Res. B Appl. Biomater. 78B(1), 138–145 (2006)

    Article  Google Scholar 

  69. Stringer, J., Derby, B.: Limits to feature size and resolution in ink jet printing. J. Eur. Ceram. Soc. 29, 913–918 (2009)

    Article  Google Scholar 

  70. Derby, B.: J. Mater. Chem. 18(47), 5717–5721 (2008)

    Article  Google Scholar 

  71. Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., Piana, C.: Biosens. Bioelectron. 20(10), 2019–2026 (2005)

    Article  Google Scholar 

  72. Setti, L., Piana, C., Bonazzi, S., Ballarin, B., Frascaro, D., Fraleoni-Morgera, A., Giuliani, S.: Anal. Lett. 37(8), 1559–1570 (2004)

    Article  Google Scholar 

  73. Sen, A.K., Darabi, J.: Droplet ejection performance of a monolithic thermal inkjet print head. J. Micromech. Microeng. 17(8), 1420–1427 (2007)

    Article  Google Scholar 

  74. Saunders, R.E., Derby, B.: Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev. 59(8), 430–448 (2014)

    Article  Google Scholar 

  75. Zhou, Z., Buchanan, F., Mitchell, C., Dunne, N.: Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng., C 38, 1–10 (2014)

    Article  Google Scholar 

  76. Peters, F., Haenel, T., Bernhardt, A., Lode, A., Gelinsky, M., Duerr, H.: In vitro examination of 3D printed vs. milled scaffolds from beta-tricalcium phosphate (beta-TCP) for patient individual bone regeneration (2008)

    Google Scholar 

  77. Bredt, J.: Binder Composition for use in Three Dimensional Printing (1998)

    Google Scholar 

  78. Gbureck, U., Holzel, T., Biermann, I., Barralet, J.E., Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci. Mater. Med. 19(4), 1559–1563 (2008)

    Article  Google Scholar 

  79. Klammert, U., Gbureck, U., Vorndran, E., Rödiger, J., Meyer-Marcotty, P., Kübler, A.C.: 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J. Cranio-Maxillofacial Surg. 38(8), 565–570 (2010)

    Article  Google Scholar 

  80. Moseke, C., Gbureck, U.: Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 6(10), 3815–3823 (2010)

    Article  Google Scholar 

  81. Moseke, C., Gelinsky, M., Groll, J., Gbureck, U.: Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V Co, and Cu ions. Mater. Sci. Eng., C 33(3), 1654–1661 (2013)

    Article  Google Scholar 

  82. Vorndran, E., Klammert, U., Klarner, M., Grover, L.M., Barralet, J.E., Gbureck, U.: 3D printing of β-tricalcium phosphate ceramics. Dent. Mater. 25(5), e18–e19 (2009)

    Article  Google Scholar 

  83. Lowmunkong, R., Sohmura, T., Suzuki, Y., Matsuya, S., Ishikawa, K.: Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method. J. Biomed. Mater. Res. B Appl. Biomater. 90B(2), 531–539 (2009)

    Article  Google Scholar 

  84. Suwanprateeb, J., Thammarakcharoen, F., Wasoontararat, K., Suvannapruk, W.: Influence of printing parameters on the transformation efficiency of 3D-printed plaster of paris to hydroxyapatite and its properties. Rapid Prototyping Journal 18(6), 490–499 (2012)

    Article  Google Scholar 

  85. Utela, B.R., Storti, D., Anderson, R.L., Ganter, M.: Development process for custom three-dimensional printing (3DP) material systems. J. Manuf. Sci. Eng. 132(1), 011008 (2010)

    Article  Google Scholar 

  86. Saunders, R.E., Derby, B.: Inkjet printing biomaterials for tissue engineering-Bioprinting. Int. Mater. Rev. (2014)

    Google Scholar 

  87. Reis, N., Derby, B.: Ink jet deposition of ceramic suspensions: modelling and experiments of droplet formation. MRS Symp. Proc. 624, 65–70 (2000)

    Article  Google Scholar 

  88. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)

    Article  Google Scholar 

  89. Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504 (2013)

    Article  Google Scholar 

  90. Kreke, M., Huckle, W., Goldstein, A.: Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36, 1047–1055 (2005)

    Article  Google Scholar 

  91. Schulze, D., Wittmaier, A.: Flow properties of highly dispersed powders at very small consolidation stresses. Chem. Eng. Technol. 26, 133–1337 (2003)

    Article  Google Scholar 

  92. Schulze, D., Wittmaier, A.: Flow properties of highly dispersed powders at very small consolidation stresses. Chem. Eng. Technol. 26, 133–1337 (2003)

    Article  Google Scholar 

  93. Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., Fischer, H.: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30(12), 2563–2567 (2010)

    Article  Google Scholar 

  94. Castilho, M., Moseke, C., Ewald, A., Gbureck, U., Groll, J., Pires, I., Teßmar, J., Vorndran, E.: Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6, 015006–015017 (2014)

    Article  Google Scholar 

  95. Hogekamp, S., Pohl, M.: Methods for characterizing wetting and dispersing of powder. ChemIng Tech 76, 385–390 (2004)

    Google Scholar 

  96. Balakrishnan, A., Pizette, P., Martin, C.L., Joshi, S.V., Saha, B.P.: Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 58, 802–812 (2010)

    Article  Google Scholar 

  97. Sachs, E., Cima, M., Bredt, J.: Massachusetts institute of technology, assignee. In: Process for Removing Loose Powder Particles from Interior Passages of a Body. United States (1996)

    Google Scholar 

  98. Pfister, A., Landers, R., Laib, A., Huebner, U., Schmelzeisen, R., Muelhaupt, R.: Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J. Polym. Sci. Part A: Polym. Chem. 42, 624–638 (2004)

    Article  Google Scholar 

  99. Christ, S., Schnabel, M., Vorndran, E., Groll, J., Gbureck, U.: Fiber reinforcement during 3D printing. Mater. Lett. 139, 165–168 (2015)

    Article  Google Scholar 

  100. Ramay, H., Zhang, M.: Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25, 5171–5180 (2004)

    Article  Google Scholar 

  101. Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S.: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater. Sci. 1, 1250–1260 (2013)

    Article  Google Scholar 

  102. Tarafder, S., Balla, V.K., Davies, N.M., Bandyopadhyay, A., Bose, S.: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regenerative Med. 7(8), 631–641 (2013)

    Article  Google Scholar 

  103. Fielding, G.A., Bandyopadhyay, A., Bose, S.: Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28(2), 113–122 (2012)

    Article  Google Scholar 

  104. Vorndran, E., Moseke, C., Gbureck, U.: 3D printing of ceramic implants. MRS Bull. 40(02), 127–136 (2015)

    Google Scholar 

  105. Alaadien, K., Sebastian, V., Jurgen, W., Gabriele, G., Annett, R., Wolfgang, M., Matthias, S.: Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 18, 909–916 (2007)

    Article  Google Scholar 

  106. LeGeros, R., Lin, S., Rohanizadeh, R., Mijares, D., LeGeros, J.: Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 14, 201–209 (2003)

    Article  Google Scholar 

  107. Paulo, J., Bopaya, B:. Bio-Materials and Prototyping Applications in Medicine. Springer (2007)

    Google Scholar 

  108. Leukers, B., Gulkan, H., Irsen, S., Milz, S., Tille, C., Schieker, M., Seitz, H.: Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med. 16, 1121–1124 (2005)

    Article  Google Scholar 

  109. Pilliar, R., Filiaggi, M., Wells, J., Grynpas, M., Kandel, R.: Porous calcium polyphosphate scaffolds for bone substitute applications in vitro characterization. Biomaterials 22, 963–972 (2001)

    Article  Google Scholar 

  110. Hutmacher, D.W., Kirsch, A., Ackermann, K.L., Hürzeler, M.B.: A tissue engineered cell-occlusive device for hard tissue regeneration—a preliminary report. Int. J. Periodontics Restorative Dent. 21(1), 49–59 (2001)

    Google Scholar 

  111. Shikinami, Y., Okuno, M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20(9), 859–877 (1999)

    Article  Google Scholar 

  112. Agrawal, C.M., Athanasiou, K.A.: Technique to control pH in vicinity of biodegrading PLA-PGA implants. J. Biomed. Mater. Res. 38(2), 105–114 (1997)

    Article  Google Scholar 

  113. Kim, S., Utsunomiya, H., Koski, J., Wu, B., Cima, M., Sohn, J., Mukai, K., Griffith, L., Vacanti, J.: Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg. 228, 8–13 (1998)

    Article  Google Scholar 

  114. Vance, R., Miller, D., Thapa, A., Haberstroh, K., Webster, T.: Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 25, 2095–3103 (2004)

    Article  Google Scholar 

  115. Giordano, R., Wu, B., Borland, S., Cima, L., Sachs, E., Cima, M.: Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomat. Sci. Polym. 8, 63–75 (1997)

    Article  Google Scholar 

  116. Tripathi, G., Basu, B.: In vitro osteogenic cell proliferation, mineralization, and in vivo osseointegration of injection molded high-density polyethylene-based hybrid composites in rabbit animal model. J. Biomater. Appl. (2014)

    Google Scholar 

  117. Tripathi, G., Basu, B.: Injection-molded high-density polyethylene–hydroxyapatite–aluminum oxide hybrid composites for hard-tissue replacement: mechanical, biological, and protein adsorption behavior. J. Appl. Polym. Sci. 124(3), 2133–2143 (2012)

    Article  Google Scholar 

  118. Bodhak, S., Nath, S., Basu, B.: Friction and wear properties of novel HDPE–HAp–Al2O3 biocomposites against alumina counterface. J. Biomater. Appl. 23(5), 407–433 (2008)

    Article  Google Scholar 

  119. Lu, K., Reynolds, W.T.: 3DP process for fine mesh structure printing. Powder Technol. 187, 11–18 (2008)

    Article  Google Scholar 

  120. Ltd. MU. d-Shape, the mega scale free-form printer of buildings

    Google Scholar 

  121. Wu, W., Zheng, Q., Guo, X., Sun, J., 4:065005 YLBM. A programmed release multi drug implant fabricated by three dimensional printing technology for bone tuberculosis therapy. Biomed. Mater. 4, 65005–65015 (2009)

    Google Scholar 

  122. Zawacki, S.J., Koutsoukos, P., Salimi, N., Nancollas, G.: The growth of calcium phosphates. In: Davis, J.A., Hayes, K.F, (eds.) Geochemical Processes at Mineral Surfaces. American Chemical Society Symposium Series, vol. 323, pp. 650–662 (1996)

    Google Scholar 

  123. Suwanprateeb, J., Suvannapruk, W., Wasoontararat, K.: Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material. J. Mater. Sci. Mater. Med. 21, 419–429 (2010)

    Article  Google Scholar 

  124. Kanter, B., Geffers, M., Ignatius, A., Gbureck, U.: Control of in vivo mineral bone cement degradation. Acta Biomater. 10, 3279–3287 (2014)

    Article  Google Scholar 

  125. Monkhouse, D.C., Kumar, S., Rowe, C.W.: Rapid prototyping and manufacturing process (2003)

    Google Scholar 

  126. Hassan, K.A.R.: MS thesis. Suny B. The Microelectrophoretic Behaviour of Sparingly Soluble Salts. State University of New York (1984)

    Google Scholar 

  127. Vorndran, E.: University of Würzburg (2012)

    Google Scholar 

  128. Klammert, U., Vorndran, E., Reuther, T., Müller, F., Zorn, K., Gbureck, U.: Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21, 2947–2953 (2010)

    Article  Google Scholar 

  129. Gbureck, U., Hoelzel, T., Biermann, I., Barralet, J.E., Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci. Mater. Med. 19, 1559–1563 (2008)

    Article  Google Scholar 

  130. Barralet, J., Gbureck, U., Habibovic, P., Vorndran, E., Gerard, C., Doillon, C.: Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng. Part A 15, 1601–1609 (2009)

    Article  Google Scholar 

  131. Sodo, A., Hasegawa, M., Fukuda, A., Uchida, A.: Treatment of infected hip arthroplasty with antibiotic-impregnated calcium hydroxide. J. Arthroplasty 23, 145–150 (2008)

    Article  Google Scholar 

  132. Uchida, A., Shinto, Y., Araki, N., Ono, K.: Slow release of anticancer drugs from porous calcium hydroxide ceramic. J. Orthop. Res. 10, 440–445 (1992)

    Article  Google Scholar 

  133. Gbureck, U., Vorndran, E., Müller, F., Barralet, J.: Low temperature direct 3D printed bioceramics and biocomposites as drug release matrix. J. Controlled Release 122, 173–180 (2007)

    Article  Google Scholar 

  134. Cornelsen, M., Petersen, S., Dietsch, K., Rudolph, A., Schmitz, K., Sternberg, K., Seitz, H.: Infiltration of 3D printed tricalciumphosphate scaffolds with biodegradable polymers and biomolecules for local drug delivery. Biomed. Technol. 58, 4090–4091 (2013)

    Google Scholar 

  135. Becker, S., Bolte, H., Schünemann, K., Seitz, H., Bara, J., Beck-Broichsitter, B., Russo, P., Wiltfang, J., Warnke, P.: Endocultivation: the influence of delayed vs. simultaneous application of BMP-2 onto individually formed hydroxyapatite matrices for heterotopic bone induction. Int. J. Oral Maxillofac. Surg. 41, 1153–1160 (2012)

    Article  Google Scholar 

  136. Klammert, U., Bohm, H., Schweitzer, T., Wurzler, K., Gbureck, U., Reuther, J.: Multi-directional Le Fort III midfacial distraction using an individual prefabricated device. J. Cranio-Maxillofacial Surg. 37, 210–215 (2009)

    Article  Google Scholar 

  137. Torres, J., Tamimi, F., Alkhraisat, M.H., Prados-Frutos, J.C., Rastikerdar, E., Gbureck, U., Barralet, J.E., Lopez-Cabarcos, E.: Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J. Clin. Periodontol. 38, 1147–1153 (2011)

    Article  Google Scholar 

  138. Sandler, N., Määttänen, A., Ihalainen, P., Kronberg, L., Meierjohann, A., Viitala, T., Peltonen, J.: Inkjet printing of drugs substances and use of porous substrated-towards individualized dosing. J. Pharm. Sci. 100, 3386–3395 (2011)

    Article  Google Scholar 

  139. Wu, B.M., Boland, S.W., Giordano, R.A., Coma, L.G., Sachs, E.M., Cima, M.J.: Solid free-form fabrication of drug delivery device. J. Controlled Release 40, 77–87 (1996)

    Article  Google Scholar 

  140. Katstra, W.E., Palazzolo, R.D., Rowe, C.W., Giritlioglu, B., Teung, P., Cima, M.J.: Oral dosage forms fabricated by Three Dimensional Printing. J. Control Release 66, 1–9 (2000)

    Article  Google Scholar 

  141. Wu, W.G., Zheng, Q.X.: The controlled-releasing drug implant based on the three dimensional printing technology: fabrication and properties of drug releasing in vivo. J. Wuhan Univ. Technol. Mater. Sci. Ed. 24, 977–981 (2009)

    Google Scholar 

  142. Yu, D.G., Zhu, L.M., Branford-White, C.J., Yang, X.L.: Three-dimensional printing in pharmaceutics: promises and problems. J. Pharm. Sci. 97, 3666–3690 (2007)

    Article  Google Scholar 

  143. Yu, D.G., XL, D.G., Yang, X.L., Huang, W.D., Liu, J., Wang, Y.G., Xu, H.: Tablets with material gradients fabricated by three-dimensional printing. J. Pharm. Sci. 96, 2446–2456 (2007)

    Article  Google Scholar 

  144. Vorndran, E., Klammert, U., Ewald, A., Barralet, J.E., Gbureck, U.: Similtaneous bioactive immobilisation during 3D powder printing of bioceramic drug release matrices. Adv. Funct. Mater. 20, 1585–1591

    Google Scholar 

  145. Luo, Y., Lode, A., Sonntag, F., Nies, B., Gelinsky, M.: Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. J. Mater. Chem. B 1(33), 4088–4098 (2013)

    Article  Google Scholar 

  146. Landers, R., Hübner, U., Schmelzeisen, R., Mülhaupt, R.: Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23), 4437–4447 (2002)

    Article  Google Scholar 

  147. Luo, Y., Lode, A., Wu, C., Gelinsky, M.: 3D-plotting of bioceramic scaffolds under physiological conditions for bone tissue engineering. CRC Press, Florida (2013)

    Book  Google Scholar 

  148. Guo, B., Lei, B., Li, P., Ma, P.X.: Functionalized scaffolds to enhance tissue regeneration. Regenerative Biomaterials 2, 47–57 (2015)

    Article  Google Scholar 

  149. Franco, J., Hunger, P., Launey, M., Tomsia, A., Saiz, E.: Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 6, 218–228 (2010)

    Article  Google Scholar 

  150. De Clerck, J.P.: Microwave polymerization of acrylic resins used in dental prostheses. J. Prosthet. Dent. 57(5), 650–658 (1987)

    Article  Google Scholar 

  151. Butscher, A., Bohner, M., Doebelin, N., Hofmann, S., Muller, R.: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 9, 9149–9158 (2013)

    Article  Google Scholar 

  152. Kang, S.-J.L.: Sintering: densification, grain growth and microstructure: Butterworth-Heinemann (2004)

    Google Scholar 

  153. Basu, B., Katti, D.S., Kumar, A.: Advanced Biomaterials: Fundamentals, Processing, and Applications. Wiley, September 2009, 776 p

    Google Scholar 

  154. Suk, M., Choi, S., Kim, J., Kim, Y., YK, Y.S.: Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process. Met. Mater. Int. 9, 599–603 (2003)

    Article  Google Scholar 

  155. Warnke, P.H., Seitz, H., Warnke, F., Becker, S.T., Sivananthan, S., Sherry, E., Liu, Q., Wiltfang Jr, Douglas T. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. 2009

    Google Scholar 

  156. Tarafder, S., Balla, V.K., Davies, N.M., Bandyopadhyay, A., Bose, S.: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue. Eng. Regen. Med. 7(8), 631–641 (2013)

    Article  Google Scholar 

  157. Yadoji, P., Peelamedu, R., Agrawal, D., Roy, R.: Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering. Mater. Sci. Eng., B 98(3), 269–278 (2003)

    Article  Google Scholar 

  158. Brooke, L.F., Toby, D.B., Zee, U., Dietmar, W.H., Paul, D.D., Tim, R.D.: Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 5(2), 025001 (2013)

    Article  Google Scholar 

  159. Gbureck, U., Grolms, O., Barralet, J.E., Grover, L.M., Thull, R.: Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 24(23), 4123–4131 (2003)

    Article  Google Scholar 

  160. Gbureck, U., Hozel, T., Klammert, U., Wurzler, K., Muller, F.A., Barralet, J.E.: Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 17, 3940–3945 (2007)

    Article  Google Scholar 

  161. Gbureck, U., Hölzel, T., Klammert, U., Würzler, K., Müller, F.A., Barralet, J.E.: Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 17(18), 3940–3945 (2007)

    Article  Google Scholar 

  162. Meininger, S., Mandal, S., Kumar, A., Groll, J., Basu, B., Gbureck, U.: Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomaterialia (2015); Provisionally accepted

    Google Scholar 

  163. Hutchings, I.M., Martin, G.D.: Inkjet technology for digital fabrication. Wiley (2012)

    Google Scholar 

  164. Wu, B.: Microstructural control during three dimensional printing of polymeric medical devices, PhD thesis, document no 39110863, Page no. 246, Massachusetts Institute of Technology (1998)

    Google Scholar 

  165. Vorndran, E., Klammert, U., Ewald, A., Barralet, J.E., Gbureck, U.: Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv. Funct. Mater. 20(10), 1585–1591 (2010)

    Article  Google Scholar 

  166. Steven, M., Emanuel, M., Michael, C.: Metal parts generation by three dimensional printing. Massach. Inst. Technol. 28, 144–150 (1992)

    Google Scholar 

  167. Chandrasekaran, M., Lim, K., Lee, M., Cheang, P.: Effect of process parameter on properties of titanium alloy fabricated using three-dimensional printing. In: Proceedings of the 3rd International Conference, vol. 8, pp. 1–4, 2007

    Google Scholar 

  168. St-Pierre, J., Gauthier, M., Lefebvre, L., Tabrizian, M.: Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials 26, 7319–7328 (2005)

    Article  Google Scholar 

  169. Wu, C., Fan, W., Zhou, Y., Luo, Y., Gelinsky, M., Chang, J., Xiao, Y.: 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J. Mater. Chem. 22(24), 12288–12295 (2012)

    Article  Google Scholar 

  170. Chumnanklang, R., Panyathanmaporn, T., Sitthiseripratip, K., Suwanprateeb, J.: 3D printing of hydroxyapatite: effect of binder concentration in pre-coated particle on part strength. Mater. Sci. Eng. C 27, 914–921 (2007)

    Article  Google Scholar 

  171. Leukers, B., Gulkan, H., Irsen, S., Milz, S., Tille, C., Seitz, H., Schieker, M.: Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing. Mat wiss u Werkstofftech 36, 781–787 (2005)

    Article  Google Scholar 

  172. Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 74, 782–788 (2005)

    Article  Google Scholar 

  173. Muller, B., Deyhle, H., F, F.: Bio-mimetic hollow scaffolds for long bone replacement. Proc. SPIE 7401, 1–13 (2009)

    Google Scholar 

  174. Schumacher, M., Deisinger, U., Detsch, R., Ziegler, G.: Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J. Mater. Sci. Mater. Med. 21, 3119–3127 (2010)

    Article  Google Scholar 

  175. Becker, S., Bolte, H., Krapf, O., Seitz, H., Douglas, T., Sivananthan, S., Wiltfang, J., Sherry, E., Warnke, P.: Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol. 45, 181–188 (2009)

    Article  Google Scholar 

  176. Fierz, F., Beckmann, F., Huser, M., Irsen, S., Leukers, B., Witte, F., Degistirici, O., Andronache, A., Thie, M., Müller, B.: The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 29, 3799–3806 (2008)

    Article  Google Scholar 

  177. Suwanprateeb, J., Suvannapruk, W., Sanngam, R.: Self-reinforcement of three dimensionally printed polymethyl Methacrylate. Polym. Testing 27, 711–716 (2008)

    Article  Google Scholar 

  178. Suwanprateeb, J., Chumnanklang, R.: Three-dimensional printing of porous polyethylene structure using water-based binders. J. Biomed. Mater. Res. Part B Appl. Biomater. 78, 138–145 (2006)

    Article  Google Scholar 

  179. Gbureck, U., Holzel, T., Thull, R., Muller, F.A., Barralet, J.E.: Preparation of nanocrystalline hydroxyapatite scaffolds by 3D powder printing. Cytotherapy 8, 14 (2006)

    Google Scholar 

  180. Inzana, J.A., Olvera, D., Fuller, S.M., Kelly, J.P., Graeve, O.A., Schwarz, E.M., Kates, S.L., Awad, H.A.: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13), 4026–4034 (2014)

    Article  Google Scholar 

  181. Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., Fischer, H.: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30, 2563–2567 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Basu, B. (2017). Fundamentals of Scaffolds Fabrication Using Low Temperature Additive Manufacturing. In: Biomaterials for Musculoskeletal Regeneration. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-3059-8_5

Download citation

Publish with us

Policies and ethics