Skip to main content

Advertisement

Log in

Additive fabrication technologies applied to medicine and health care: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive fabrication (AF) and rapid prototyping (RP) technologies are mostly associated with applications in the product development and the design process as well as with small batch manufacturing. Due to their relatively high speed and flexibility, however, they have also been employed in various non-manufacturing applications. A field that attracts increasingly more attention by the scientific community is related to the application of AF technologies in medicine and health care. The associated research is focused both on the development of specifically modified or new methods and systems based on AF principles, as well as on the applications of existing systems assisting health care services. In this paper, representative case studies and research efforts from the field of AF medical applications are presented and discussed in detail. The case studies included cover applications like the fabrication of custom implants and scaffolds for rehabilitation, models for pre-operating surgical planning, anatomical models for the mechanical testing and investigation of human bones or of new medical techniques, drug delivery devices fabrication, as well as the development of new AF techniques specifically designed for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wohlers T (2004) Wohlers Report 2004: Rapid prototyping, tooling and manufacturing state of the industry report. Wohlers Ass., Oak Ridge-Colorado, USA

  2. Giannatsis J, Dedoussis V, Karalekas D (2002) Architectural scale modeling using stereolithography. Rapid Prototyp J 8(3):200–207

    Article  Google Scholar 

  3. Wai HW (2001) RP in art and conceptual design. Rapid Prototyp J 7(4):217–219

    Article  Google Scholar 

  4. Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63(7):1006–1015

    Article  Google Scholar 

  5. Gibson I (2005) Rapid prototyping: from product development to medicine and beyond. Virtual Phys Proto 1(1):31–42

    Article  Google Scholar 

  6. Galantucci LM, Percoco G, Angelelli G, Lopez C, Introna F, Liuzzi C, De Donno A (2006) Reverse engineering techniques applied to a human skull, for CAD 3D reconstruction and physical replication by rapid prototyping. J Med Eng Technol 30(2):102–111

    Article  Google Scholar 

  7. Petzold R, Zeilhofer H-F, Kalender WA (1999) Rapid prototyping technology in medicine - basics and applications. Comp Med Imag Graph 23:277–284

    Article  Google Scholar 

  8. Choi J-Y, Choi J-H, Kim N-K, Kim Y, Lee J-K, Kim M-K, Lee J-H, Kim M-J (2002) Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg 31:23–32

    Article  Google Scholar 

  9. Santler G, Karcher H, Gaggl A, Kern R (1998) Stereolithography versus milled three-dimensional models: comparison of production method, indication, and accuracy. Comp Aid Surg 3:248–256

    Article  Google Scholar 

  10. Webb PA (2000) A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24(4):149–153

    Article  MathSciNet  Google Scholar 

  11. Sanghera B, Naique S, Papaharilaou Y, Amis A (2001) Preliminary study of rapid prototype medical models. Rapid Prototyp J 7(5):275–284

    Article  Google Scholar 

  12. Lohfeld S, Barron V, McHugh PE (2005) Biomodels of bone: a review. Ann Biomed Eng 33(10):1295–1311

    Article  Google Scholar 

  13. Bill JS, Reuther JF, Dittmann W, Kubler N, Meier JL, Pistner H, Wittenberg G (1995) Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg 24:98–103

    Article  Google Scholar 

  14. D’Urso PS, Atkinson RL, Lanigan MW, Earwaker WJ, Bruce IJ, Holmes A, Banker TM, Effeney DJ, Thompson RG (1998) Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg 51:522–530

    Google Scholar 

  15. Sailer HF, Haers PE, Zollikofer CP, Warnke T, Carls FR, Stucki P (1998) The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int J Oral Maxillofac Surg 27(5):327–333

    Article  Google Scholar 

  16. Kermer C, Lindner A, Friede I, Wagner A, Millesi W (1998) Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxill Surg 26:136–139

    Google Scholar 

  17. Kermer C, Rasse M, Lagogiannis G, Undt G, Wagner A, Millesi W (1998) Colour Stereolithography for planning complex maxillofacial tumor surgery. J Craniomaxill Surg 26:360–362

    Google Scholar 

  18. D’Urso PS, Anderson RL, Weidmann MJ, Redmond MJ, Hall BI, Earwaker WJ, Thompson RG, Effeney DJ (1999) Biomodelling of skull base tumours. J Clin Neurosci 6(1):31–35

    Article  Google Scholar 

  19. Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14(6):899–914

    Article  Google Scholar 

  20. Fan X, Zhou H, Lin M, Fu Y, Li J (2007) Late reconstruction of the complex orbital fractures with computer-aided design and computer-aided manufacturing technique. J Craniofac Surg 18(3):665–673

    Article  Google Scholar 

  21. D’Urso PS, Thompson RG, Atkinson RL, Weidmann MJ, Redmond MJ, Hall BI, Jeavons SJ, Benson MD, Earwaker WJ (1999) Cerebrovascular biomodelling: a technical note. Surg Neurol 52(5):490–500

    Article  Google Scholar 

  22. Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J (2004) Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100(1):139–145

    Article  Google Scholar 

  23. Binder TM, Moertl D, Mundigler G, Rehak G, Franke M, Delle-Karth G, Mohl W, Baumgartner H, Maurer G (2000) Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data In vitro and in vivo validation. J Am Coll Cardiol 35(1):230–237

    Article  Google Scholar 

  24. Wagner JD, Baack B, Brown GA, Kelly J (2004) Rapid 3-dimensional prototyping for surgical repair of maxillofacial fractures: a technical note. J Oral Maxillofac Surg 62(7):898–901

    Article  Google Scholar 

  25. D’Urso PS, Hall BI, Atkinson RL, Weidmann MJ, Redmond MJ (1999) Biomodel-guided stereotaxy. Neurosurgery 44(5):1084-1093

    Article  Google Scholar 

  26. D’Urso PS, Williamson OD, Thompson RG (2005) Biomodeling as an aid to spinal instrumentation. Spine 30(24):2841-2845

    Article  Google Scholar 

  27. Ngan EM, Rebeyka IM, Ross DB, Hirji M, Wolfaardt JF, Seelaus R, Grosvenor A, Noga ML (2006) The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg 132(2):264-269

    Article  Google Scholar 

  28. Starly B, Piatt JH, Sun W, Faerber E (2005) Virtual and medical prototype assisted craniofacial reconstructive surgery. In Virtual Prototyping and Rapid Manufacturing - Advanced research in virtual and Rapid Prototyping, Taylor & Francis, London, pp 103–107

  29. Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18(4):571–577

    Google Scholar 

  30. Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL (2005) Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol 76(4):503–507

    Article  Google Scholar 

  31. De Beer D, Truscott M, Booysen G, Barnard L, van der Walt J (2005) Rapid manufacturing of patient-specific shielding masks using RP in parallel with metal spraying. Rapid Prototyp J 11(5):298–303

    Article  Google Scholar 

  32. Zemnick C, Woodhouse SA, Gewanter RM, Raphael M, Piro JD (2007) Rapid prototyping technique for creating a radiation shield. J Prosthet Dent 97(4):236–241

    Article  Google Scholar 

  33. Johnson EAC, Young PG (2005) On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models. J Biomech 38(1):39–45

    Google Scholar 

  34. Bibb R, Sisias G (2002) Bone structure models using stereolithography: a technical note. Rapid Prototyp J 8(1):25–29

    Article  Google Scholar 

  35. Peters P, Langlotz F, Nolte L-P (2002) Computer-assisted screw insertion into real 3D rapid prototyping pelvis models. Clin Biomech 17(5):376–382

    Article  Google Scholar 

  36. Clinkenbeard RE, Johnson DL, Parthasarathy R, Altan MC, Tan KH, Park SM, Crawford RH (2002) Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique. AIHA J 63(2):141–150

    Article  Google Scholar 

  37. Zhang W, Zhang S, Huang X, Wang C (2005) 3D treatment planning and simulating for craniofacial skeleton. Int J Adv Manuf Technol 26:1043–1047

    Article  Google Scholar 

  38. He Y, Ye M, Wang C (2006) A method in the design and fabrication of exact-fit customized implant based on sectional medical images and rapid prototyping technology. Int J Adv Manuf Technol 28:504–508

    Article  Google Scholar 

  39. Truscott M, De Beer D, Vicatos G, Hosking K, Barnard L, Booysen G, Campbell IR (2007) Using RP to promote collaborative design of customised medical implants. Rapid Prototyp J 13(2):107–114

    Article  Google Scholar 

  40. Winder J, Cooke RS, Gray J, Fannin T, Fegan T (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 23(1):26–28

    Article  Google Scholar 

  41. D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, Tomlinson FH (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53(3):200–204

    Article  Google Scholar 

  42. Singare S, Dichen L, Bingheng L, Yanpu L, Zhenyu G, Yaxiong L (2004) Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med Eng Phys 26(8):671–676

    Article  Google Scholar 

  43. Singare S, Yaxiong L, Dichen L, Bingheng L, Sanhu H, Gang L (2006) Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyp J 12(4):206–213

    Article  Google Scholar 

  44. He J, Li D, Lu B (2006) Custom fabrication of a composite hemi-knee joint based on rapid prototyping. Rapid Prototyp J 12(4):198–205

    Article  Google Scholar 

  45. Liu Q, Leu MC, Schmitt SM (2006) Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 29:317–335

    Article  Google Scholar 

  46. Chang CC, Lee MY, Wang SH (2006) Digital denture manufacturing-An integrated technologies of abrasive computer tomography, CNC machining and rapid prototyping. Int J Adv Manuf Technol 31:41–49

    Article  Google Scholar 

  47. Eggbeer D, Bibb R, Williams R (2005) The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proc Inst Mech Eng 219(3):195–202

    Google Scholar 

  48. Wu M, Tinschert J, Augthun M, Wagner I, Schadlich-Stubenrauch J, Sahm PR, Spiekermann H (2001) Application of laser measuring, numerical simulation and rapid prototyping to titanium dental castings. Dent Mater 17(2):102–108

    Article  Google Scholar 

  49. Kruth J-P, Vandenbroucke B, Van Vaerenbergh J, Naert I (2005) Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. In Virtual Prototyping and Rapid Manufacturing - Advanced research in virtual and Rapid Prototyping, Taylor & Francis, London, pp 139–146

  50. Bibb R, Eggbeer D, Williams R (2006) Rapid manufacture of removable partial denture frameworks. Rapid Prototyp J 12(2):95–99

    Article  Google Scholar 

  51. Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203

    Article  Google Scholar 

  52. Hollander DA, Von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 27(7):955–963

    Article  Google Scholar 

  53. Li X, Wang J, Shaw LL (2005) Laser densification of extruded dental porcelain bodies in multi-material laser densification process. Rapid Prototyp J 11(1):52–58

    Article  Google Scholar 

  54. Ciocca L, Scotti R (2004) CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent 92(6):591–595

    Article  Google Scholar 

  55. Al Mardini M, Ercoli C, Graser GN (2005) A technique to produce a mirror-image wax pattern of an ear using rapid prototyping technology. J Prosthet Dent 94(2):195–198

    Article  Google Scholar 

  56. Bens A, Seitz H, Bermes G, Emons M, Pansky A, Roitzheim B, Tobiasch E, Tille C (2007) Non-toxic flexible photopolymers for medical stereolithography technology. Rapid Prototyp J 13(1):38–47

    Article  Google Scholar 

  57. Curodeau A, Sachs E, Caldarise S (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53:525–535

    Article  Google Scholar 

  58. Hunt JA, Callaghan JT, Sutcliffe CJ, Morgan RH, Halford B, Black RA (2005) The design and production of Co-Cr alloy implants with controlled surface topography by CAD-CAM method and their effects on osseointegration. Biomaterials 26(29):5890–5897

    Article  Google Scholar 

  59. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotech 22(7):354–362

    Article  Google Scholar 

  60. Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotech 16(5):224–230

    Article  Google Scholar 

  61. Chen Z, Li D, Lu B, Tang Y, Sun M, Wang Z (2004) Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyp J 10(5):327–333

    Article  Google Scholar 

  62. Woesz A, Rumpler M, Stampfl J, Varga F, Fratzl-Zelman N, Roschger P, Klaushofer K, Fratzl P (2005) Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mat Sci Eng:C 25(2):181–186

    Article  Google Scholar 

  63. Xu S, Li D, Lu B, Tang Y, Wang C, Wang Z (2007) Fabrication of a calcium phosphate scaffold with a three-dimensional channel network and its application to perfusion culture of stem cells. Rapid Prototyp J 13(2):99–106

    Article  Google Scholar 

  64. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497

    Article  Google Scholar 

  65. Yeong W-Y, Chua C-K, Leong K-F (2006) Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyp J 12(4):229–237

    Article  Google Scholar 

  66. Taylor PM, Sachlos E, Dreger SA, Chester AH, Czernuszka JT, Yacoub MH (2006) Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping. Biomaterials 27:2733–2737

    Article  Google Scholar 

  67. Chen VJ, Smith LA, Ma PX (2006) Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 27:3973–3979

    Article  Google Scholar 

  68. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2):782–788

    Google Scholar 

  69. Leukers B, Gulkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124

    Article  Google Scholar 

  70. Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, Schantz J-T (2006) A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Int J Oral Maxillofac Surg 35:928–934

    Article  Google Scholar 

  71. Dellinger JG, Eurell JAC, Jamison RD (2006) Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein. J Biomed Mater Res 76A:366–376

    Article  Google Scholar 

  72. Miranda P, Saiz E, Gryn K, Tomsia AP (2006) Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomat 2:457–466

    Article  Google Scholar 

  73. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  Google Scholar 

  74. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Chua SW (2003) Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123

    Article  Google Scholar 

  75. Huang H, Oizumi S, Kojima N, Niino T, Sakai Y (2007) Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials 28:3815–3823

    Article  Google Scholar 

  76. Chua CK, Leong KF, Cheah CM, Chua SW (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int J Adv Manuf Technol 21:291–301

    Article  Google Scholar 

  77. Naing MW, Chua CK, Leong KF, Wang Y (2005) Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyp J 11(4):249–259

    Article  Google Scholar 

  78. Lee S-J, Kang H-W, Kang T-Y, Kim B, Lim G, Rhie J-W, Cho D-W (2007) Development of a scaffold fabrication system using an axiomatic approach. J Micromechan Microeng 17:147–153

    Article  Google Scholar 

  79. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R (2002) Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 37(15):3107–3116

    Article  Google Scholar 

  80. Moroni L, Schotel R, Sohier J, De Wijn JR, Van Blitterswijk CA (2006) Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 27(35):5918–5926

    Article  Google Scholar 

  81. Moroni L, De Wijn JR, Van Blitterswijk CA (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7):974–985

    Article  Google Scholar 

  82. Li JP, De Wijn JR, Van Blitterswijk CA, De Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27(8):1223–1235

    Article  Google Scholar 

  83. Xiong Z, Yan Y, Zhang R, Wang X (2005) Organism manufacturing engineering based on rapid prototyping principles. Rapid Prototyp J 11(3):160–166

    Article  Google Scholar 

  84. Yan Y, Wu R, Zhang R, Xiong Z, Lin F (2003) Biomaterial forming research using RP technology. Rapid Prototyp J 9(3):142–149

    Article  Google Scholar 

  85. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26:5864–5871

    Article  Google Scholar 

  86. Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540

    Article  Google Scholar 

  87. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11(1):9–17

    Article  Google Scholar 

  88. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588

    Google Scholar 

  89. Razzacki SZ, Thwar PK, Yanga M, Ugaz VM, Burns MA (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56:185–198

    Article  Google Scholar 

  90. Ikuta K, Takahashi A, Maruo S (2001) In-chip cell-free protein synthesis from DNA by using biochemical IC chips. Proc 14th IEEE Int Conf MEMS 2001, pp 455–458

  91. Kýzýlel S, Sawardecker E, Teymour F, Pérez-Luna VH (2006) Sequential formation of covalently bonded hydrogel multilayers through surface initiated photopolymerization. Biomaterials 27(8):1209–1215

    Article  Google Scholar 

  92. Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 56(11):1621–1633

    Article  Google Scholar 

  93. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(ɛ-caprolactone-co-trimethylene carbonate) II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62(3):395–403

    Article  Google Scholar 

  94. Itoga K, Kobayashi J, Yamato M, Kikuchi A, Okano T (2006) Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials 27(15):3005–3009

    Article  Google Scholar 

  95. Cheng Y-L, Lin J-H (2007) Manufacture of three-dimensional valveless micropump. J Mater Process Technol 192–193:229–236

    Article  Google Scholar 

  96. Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ (2000) Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 66:11–17

    Article  Google Scholar 

  97. Low KH, Leong KF, Chua CK, Du ZH, Cheah CM (2001) Characterization of SLS parts for drug delivery devices. Rapid Prototyp J 7(5):262–268

    Article  Google Scholar 

  98. Leong KF, Chua CK, Gui WS, Verani (2006) Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol 31:483–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dedoussis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannatsis, J., Dedoussis, V. Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol 40, 116–127 (2009). https://doi.org/10.1007/s00170-007-1308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1308-1

Keywords

Navigation