Skip to main content

Cameral Membranes, Pseudosutures, and Other Soft Tissue Imprints in Ammonoid Shells

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

Ammonoids occasionally show subtle structures linked with the attachment or contact of the soft body with the shell. Only some of these structures were mineralized and thus are rarely preserved. We describe mainly three different kinds of structures, namely (i) cameral membranes, (ii) muscle imprints (excluding muscle attachment structures) and (iii) blood vessels. Cameral membranes (i) have been discovered only in a small fraction of ammonoid species and are close to the siphuncle or cut off parts of the chambers or separate the chamber volumes vertically. Pseudosutures commonly run subparallel to the normal sutures, although they are fainter. They likely formed during the forward movement of the septal mantle prior to the insertion of a new septum. Drag lines (ii) also developed in the course of this process or may represent imprints of muscle fibers. Blood vessels (iii) also left imprints in ammonoid shells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandel K (1981) The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus (Cephalopoda). N Jahrb Geol Paläont Ab 161:153–171

    Google Scholar 

  • Bandel K (1982) Morphologie und Bildung der frühontogenetischen Gehäuse bei conchifere Moluusken. Facies 7:1–198

    Article  Google Scholar 

  • Bandel K, Boletzky SV (1979) A comparative study of the structure, development, and morphological relationships of chambered cephalopod shells. Veliger 21:313–354

    Google Scholar 

  • Bayer U (1975) Organische Tapeten im Ammoniten-Phragmocon und ihr Einfluß auf die Fossilisation. N Jahrb Geol Paläont Mh 1:12–25

    Google Scholar 

  • Bayer U (1977) Cephalopoden-Septen. I. Konstruktionsmorphologie des Ammoniten-Septums. N Jahrb Geol Paläont Abh 154:290–366

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Bülow Ev (1918) Über einige abnorme Formen bei den Ammoniten. Zeitschrift der deutschen geologischen Gesellschaft. Monatsber 69:132–139

    Google Scholar 

  • Checa AG (1996) Origin of intracameral sheets in ammonoids. Lethaia 29:61–75

    Article  Google Scholar 

  • Checa AG, Garcia-Ruiz JM (1996) Morphogenesis of the septum in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Chirat R, Boletzky SV (2003) Morphogenetic significance of the conchal furrow in nautiloids: Evidence from early embryonic shell development of Jurassic Nautilida. Lethaia 36:161–170

    Article  Google Scholar 

  • Daniel TL, Helmuth BS, Saunders B, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470–481

    Google Scholar 

  • Deecke W (1913) Paläontologische Betrachtungen. I. Über Cephalopoden. N Jahrb Min Geol Paläont Beilageband 35:241–276

    Google Scholar 

  • Doguzhaeva LA, Mapes RH (2015) Muscle scars in ammonoid shells. This volume

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1996) Attachment of the body to the shell in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Erben HK, Reid REH (1971) Ultrastructure of shell, origin of conellae, and siphuncular membranes in an ammonite. Biomineralization Res Rep 3:22–31

    Google Scholar 

  • Erven HK (1960) Primitive Ammonoidea aus dem Unterdevon Frankreichs und Deutschlands. N Jahrb Geol Paläont Abh 110(1):1–128

    Google Scholar 

  • Garcia-Ruiz JM, Checa AG (1993) A model for the morphogenesis of ammonoid septal sutures. Geobios. Mém Spéc 15:157–162

    Article  Google Scholar 

  • Garcia-Ruiz JM, Checa AG, Rivas P (1990) On the origin of ammonite sutures. Paleobiology 16:349–354

    Google Scholar 

  • Grandjean F (1910) Le siphon des ammonites et des belemnites. Bull Soc Géol France 10:496–519

    Google Scholar 

  • Grégoire C (1984) Remains of organic components in the siphonal tube and in the brown membrane of ammonoids and fossil nautiloids. Hydrothermal simulation of their diagenetic alterations. Akad Wiss Lit: Abh Math-Naturwiss Kl Mainz 5:5–56

    Google Scholar 

  • Grégoire C (1987) Ultrastructure of the Nautilus shell. In: Saunders WB, Landman NH (eds) Nautilus-the biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Griffin LE (1900) The anatomy of Nautilus pompilius. Memoirs of the. Natl Acad Sci 8:101–203

    Google Scholar 

  • Hagdorn H, Mundlos R (1983) Aspekte der Taphonomie von Muschelkalk-Cephalopoden. Teil 1: Siphozerfall und Füllmechanismus. N Jahrb Geol Paläont Abh 16:369–403

    Google Scholar 

  • Henderson RA (1984) A muscular attachment proposal for septal function in Mesozoic ammonites. Palaeontology 27:461–486

    Google Scholar 

  • Henderson RA, Kennedy WJ, Cobban WA (2002) Perspectives of ammonite paleobiology from shell abnormalities in the genus Baculties. Lethaia 35:215–230

    Article  Google Scholar 

  • Heptonstall WB (1970) Buoyancy control in ammonoids. Lethaia 3:317–328

    Article  Google Scholar 

  • Hewitt RA, Westermann GEG (1996) Post-mortem behavior of early Palaeozoic nautiloids and paleobathymetry. Paläontol Z 70(3/4):405–424

    Article  Google Scholar 

  • Hewitt RA, Westermann GEG, Zaborski PMP (1991) Chamber growth in ammonites inferred from colour markings and naturally etched surfaces of Cretaceous vascoceratids from Nigeria. Lethaia 24:271–287

    Article  Google Scholar 

  • Hölder H (1952) Über Gehäusebau, insbesondere Hohlkiel jurassicher Ammoniten. Paläontogr A 102:18–48

    Google Scholar 

  • Hölder H (1954) Über die Sipho-Anheftung bei Ammoniten. N Jahrb Geol Paläont Mh 8:372–379

    Google Scholar 

  • John R (1909) Über die Lebenweise und Organisation des Ammoniten. Inaugural-Dissertation, Universität Tübingen, Stuttgart

    Google Scholar 

  • Keupp H (1992) Organische Lamellen in einem Ammoniten-Gehäuse (Craspedites). Fossilien 3/1992:283–290

    Google Scholar 

  • Keupp H (2000) Ammoniten, paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berliner Paläobiologische Abh 12:1–390

    Google Scholar 

  • Klug C, Hoffmann R (2015) Ammonoid septa and sutures. This volume

    Google Scholar 

  • Klug C, Montenari M, Schulz H, Urlichs M (2007) Soft-tissue attachment of Middle Triassic Ceratitida from Germany. In: Landman NH, Davis RA, Tanabe K (eds) Cephalopods present and past: new insights and fresh perspectives. Springer, Netherlands

    Google Scholar 

  • Klug C, Meyer EP, Richter U, Korn D (2008) Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia 41:477–492

    Article  Google Scholar 

  • Kröger B (2002) On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35:61–70

    Article  Google Scholar 

  • Kulicki C (1979) The ammonite shell: its structure, development, and biological significance. Acta Palaeontol Polonica 39:97–142

    Google Scholar 

  • Kulicki C (1996) Ammonoid shell microstructure. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Topics in Geobiology. Plenum, New York

    Google Scholar 

  • Kulicki C, Mutvei H (1988) Functional interpretation of ammonoid septa. In: Wiedmann J, Kullmann J (eds) Cephalopods in present and past. Schweitzerbart, Stuttgart, pp. 215–228

    Google Scholar 

  • Landman NH, Waage KL (1993) Scaphitid ammonoids of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215:1–257

    Google Scholar 

  • Landman NH, Tanabe K, Mapes RH, Klofak SM, Whitehill J (1993) Pseudosutures in Paleozoic ammonoids. Lethaia 26:99–100

    Article  Google Scholar 

  • Landman NH, Polizzotto K, Mapes RH, Tanabe K (2006) Cameral membranes in prolecanitid and goniatitid ammonoids from the Permian Arcturus Formation, Nevada, USA. Lethaia 39:365–379

    Article  Google Scholar 

  • Lominadze T, Sharikadze M, Kvantaliani I (1993) On mechanism of soft body movement within body chamber in ammonites. Geobios Mém spéc 15:267–273

    Article  Google Scholar 

  • Mapes RH, Landman NH, Tanabe K, Maeda H (2002) Intracameral membranes in Permian ammonoids from the Buck Montain, Nevada Lagerstätte. GSA Abstracts with program 34:354

    Google Scholar 

  • Mutvei H (1963) Structure of siphonal tube in Recent and fossil cephalopods. Paläontol Z 37(1–2):16

    Google Scholar 

  • Mutvei H (1967) On the microscopic shell structure in some Jurassic ammonoids. N Jahrb Geol Paläont Abh 129:157–166

    Google Scholar 

  • Mutvei H, Reyment R (1973) Buoyancy control and siphuncle function in ammonites. Palaeontology 6:623–636

    Google Scholar 

  • Polizzotto K (2010) Pseudosutures in Baculites mariasensis. 8th International Symposium on Cepahlopods-Present and Past Abstracts Volume, p. 86

    Google Scholar 

  • Polizzotto K (2014) Organic origin of pseudosutures in Late Cretaceous ammonites. 10th North American Paleontological Convention abstracts book. Paleontological Soc Spec Pub 13:89

    Google Scholar 

  • Polizzotto K, Landman NH (2010) Pseudosutures and siphuncular membranes in Rhaeboceras (Scaphitidae): implications for chamber formation and shell growth. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods present and past. Tokai University, Tokyo

    Google Scholar 

  • Polizzotto K, Landman NH, Mapes RH (2007) Cameral membranes in Carboniferous and Permian goniatites: description and relationship to pseudosutures. In: Landman NH, Davis RA, Tanabe K (eds) Cephalopods present and past: New insights and fresh perspectives. Springer, Netherlands

    Google Scholar 

  • Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3: experiments with exact models of certain shell types. Bull Geological Inst Univ Uppsala New Ser 4(2):7–41

    Google Scholar 

  • Richter U (2002) Gewebeansatz-Strukturen auf Steinkernen von Ammonoideen. Geologische Beiträge Hannover 4:113

    Google Scholar 

  • Richter U, Fischer R (2002) Soft tissue attachment structures on pyritized internal moulds of ammonoids. Abh der Geol BA 57:139–149

    Google Scholar 

  • Schindewolf O (1968) Analyse eines Ammoniten-Gehäuses. Akad Wiss und der Lit. Abh Math-Naturwiss Kl Mainz 8:139–188

    Google Scholar 

  • Schoulga-Nesterenko M (1926) Nouvelles données sur l’oranisation intérieure des conques des ammonites de l’étage d’Artinsk. Bulletin de la Societé des Naturalistes de Moscou Section Géologique 34:81–99

    Google Scholar 

  • Seilacher A (1968) Sedimentationsprozesse in Ammonitengehäusen. Akad Wiss und der Lit Abh Math-Naturwiss Kl Mainz 9:191–203

    Google Scholar 

  • Seilacher A (1975) Mechanische Simulation und funktionelle Evolution des Ammoniten-Septums. Palaontol Z 49:268–286

    Google Scholar 

  • Seilacher A (1988) Why are nautiloid and ammonoid sutures so different? N Jahrb Geol Paläont Abh 177(l):41–69

    Google Scholar 

  • Seuss B, Mapes RH, Klug C, Nützel A (2012) Exceptional cameral deposits in a sublethally injured Carboniferous orthoconic nautiloid from the Buckhorn Asphalt Lagerstatte in Oklahoma, USA. Acta Pal Pol 57:375–390

    Article  Google Scholar 

  • Shimanskij VN (1974) Superorder Actinoceratoidea. General section. In: Orlov YA, Ruzhencev VE (eds) Fundamentals of Paleontology (Osnovy paleontologii) 5:323–352 Mollusca-Cephalopoda I, Israel Program for Scientific Translation, Jerusalem (translated from Russian)

    Google Scholar 

  • Stenzel HB (1964) Living nautilus. In: Teichert C (ed) Treatise on invertebrate paleontology, part K, Mollusca 3, Cephalopoda. General features—Endoceratoidea—Actinoceratoidea—Nautiloidea-Bactritoidea, vol. 1. GSA, Boulder, Colorado, and University of Kansas, Lawrence

    Google Scholar 

  • Tajika A, Naglik C, Morimoto N, Pascual-Cebrian E, Hennhöfer, DK, Klug C (2014) Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biol 20. doi:10.1080/08912963.2013.872097

    Google Scholar 

  • Tanabe K, Landman NH (1996) Septal neck-siphuncular complex. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Tanabe K, Fukuda Y, Obata I (1982) Formation and function of the siphuncle-septal neck structures in two Mesozoic ammonites. Transactions Proc Palaeontological Soc Japan New Ser 128:433–443

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH (1998) Muscle attachment scars in a Carboniferous goniatite. Paleont Res 2:130–136

    Google Scholar 

  • Tanabe K, Mapes RH, Sasaki T, Landman NH (2000) Soft-part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia 33:83–91

    Article  Google Scholar 

  • Tanabe K, Kulicki C, Landman NH (2005) Precursory siphuncular membranes in the body chamber of Phyllopachyceras and comparisons with other ammonoids. Acta Pal Pol 50:9–18

    Google Scholar 

  • Teichert C (1964) Morphology of hard parts. In: Teichert C (ed) Treatise on invertebrate paleontology, part K, Mollusca 3, Cephalopoda general features—Endoceratoidea—Actinoceratoidea—Nautiloidea—Bactritoidea. GSA, Boulder, Colorado, and University of Kansas Press, Lawrence

    Google Scholar 

  • Vogel KP (1959) Zwergwuchs bei Polyptychiten (Ammonoidea). Geol Jahrb 76:469–540

    Google Scholar 

  • Ward PD (1979) Cameral liquid in Nautilus and Ammonites. Paleobiology 5:40–49

    Google Scholar 

  • Ward PD (1987) The natural history of Nautilus. Allen and Unwin, Boston

    Google Scholar 

  • Weitschat W (1986) Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitsbergen. Mitt Geol Paläont Inst Univ Hamburg 61:249–279

    Google Scholar 

  • Weitschat W, Bandel K (1991) Organic components in phragmocones of boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65:269–303

    Article  Google Scholar 

  • Weitschat W, Bandel K (1992) Formation and function of suspended organic cameral sheets in Triassic ammonoids: reply. Paläontol Z 66:443–444

    Article  Google Scholar 

  • Westermann GEG (1971) Form, structure, and function of shell and siphuncle in coiled Meozoic ammonites. Life Sciences Contributions. ROM 78:1–39

    Google Scholar 

  • Westermann GEG (1992) Formation and function of suspended organic cameral sheets in Triassic ammonoids-discussion. Paläontol Z 66:437–441

    Article  Google Scholar 

  • Zaborski PMP (1986) Internal mould markings in a Cretaceous ammonite from Nigeria. Palaeontology 29:725–738

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Helmut Keupp (Berlin) and Anthea Lacchia (Dublin) for helpful reviews of the manuscript. Some of the results presented herein were obtained in the course of the research projects funded by the Swiss National Science Foundation SNF, #200021–113956⁄1, #200020–25029, and #200020–132870. Some of the images were kindly provided by Hans Hagdorn (Ingelfingen), David Ware (Zürich), René Hoffmann (Bochum) and Wolfgang Weitschat (Hamburg). We greatly acknowledge these contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Polizzotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polizzotto, K., Landman, N., Klug, C. (2015). Cameral Membranes, Pseudosutures, and Other Soft Tissue Imprints in Ammonoid Shells. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_4

Download citation

Publish with us

Policies and ethics