Skip to main content
Log in

Organic components in phragmocones of boreal triassic ammonoids: Implications for ammonoid biology

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Kurzfassung

Aus der borealen Trias von Svalbard und NE-Sibirien werden Ammonoideen-Faunen beschrieben, bei denen die ursprünglich aragonitischen Schalenbestandteile früdiagenetisch in Apatit umgewandelt worden sind. Durch den Umstand, daß die Gehäuse später mit Kalzit ausgefüllt wurden, läßt sich der Kammerinhalt chemisch herauslösen. Damit wird eine außergewöhnliche räumliche Betrachtungsweise des Septenbaues und des Siphonal-Apparates ermöglicht. Das Besondere an diesem Ammonoideen-Material besteht jedoch darin, daß durch den frühen Zeitpunkt der Phosphatisierung auch ehemals organische Gehäusebestandteile in Apatit umgewandelt und damit erhalten geblieben sind. So zeigen fast alle untersuchten Gehäuse ehemals organische Membranen, die die Septen und die Gehäuseinnenwände auskleiden. Diese Membranen können mit dünnen Protein-Lagen im Phragmokon des rezentenNautilus homologisiert werden, die eine besondere Rolle beim Pumpvorgang spielen, wenn die Kammerflüssigkeit nicht mehr im direkten Kontakt mit dem Siphonairohr steht. In einer Anzahl von Exemplaren sind im Phragmokon phosphatisierte, flächenhaft ausgedehnte Lamellen erhalten, die in einem z.T. komplizierten System Teile des Kammerlumens von dem übrigen Raum abriegeln. Nach ihrer Form und Lage innerhalb der Kammer werden drei Typen unterschieden: 1. Siphonal-Lamellen, 2. Transversal-Lamellen, 3. Horizontal-Lamellen. Aus der Interpretation dieser lntrakameralen organischen Strukturen ergeben sich neue Erkenntnisse bezüglich der Funktions-Morphologie von Ammonoideen-Gehäusen besonders im Zusammenhang mit Schwimmfähigkeit, Lokomotion und Lebensweise. Die Beschreibungen ähnlicher Strukturen bei phosphatisierten Ammonoiden aus dem Perm und dem Volgium der UdSSR belegen, daß das Vorkommen derartiger Lamellen nicht auf triassische Arten beschränkt ist, sondern vielmehr ein allgemeines Phänomen darstellt, dessen Erhaltung jedoch besonderer Fossilisations-Bedingungen bedarf.

Abstract

Extraordinarily well-preserved ammonoids from the Boreal Triassic of Svalbard and NE-Siberia are described, in which the original aragonite of the shell had been replaced by apatite during very early stages of diagenesis. Because of subsequent calcite cementation of the phragmocones, it is possible to dissolve the chamber contents. This allows three-dimensional observations at different ontogenetic stages. The most remarkable features, however, are preserved organic sheets in the ammonoid phragmocones which are normally readily destroyed. Nearly all specimens examined show phosphatized membranes lining the septal surfaces and the inner shell wall. These membranes are most probably homologous to thin protein layers in the phragmocone of the recentNautilus, where they are termed the pellicle. They play an important part in the buoyancy control when the chamber liquid is no longer in direct contact with the siphuncular tube. In a number of specimens, a complicated system of formerly organic sheets which close off single compartments from the main chamber volume are preserved within the phragmocone. Depending on type and position of these layers in an ammonoid chamber, three different groups may be distinguished: 1. siphuncular sheets, 2. transverse sheets, and 3. horizontal sheets. The interpretation of the presence of these sheets leads to new conclusions concerning the functional morphology of the shell, especially related to questions of buoyancy, locomotion, and mode of life. Descriptions of similar structures within Permian goniatitids and Volgian ammonites indicate, that cameral sheets are not restricted to our Triassic species, but are a more general feature. They were probably present in most ammonoids, but have rarely been preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andalib, F. 1972. Mineralogy and preservation of siphuncles in Jurassic cephalopods. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen140: 33–48, Stuttgart.

    Google Scholar 

  • Andres, D. 1985. Körperlich erhaltene Parasiten aus dem Tremadoc. - Kurzfassung. Tagung der Deutschen Paläontologischen Gesellschaft, München.

    Google Scholar 

  • — 1988. Eine phosphatisierte Faune aus dem unteren Ordoviz. - Kurzfassung, Tagung der Deutschen Paläontologischen Gesellschaft, München.

    Google Scholar 

  • Arkell, W.J.;Kümmel, B. &Wright, C.W. 1957. Mesozoic Ammonoidea. - [In:] Moore, R.G. (ed.) Treatise on Invertebrate Paleontology, Pt. L, Mollusca4: L81-L129, Geological Society of America, New York and University of Kansas Press, Lawrence, Kansas.

    Google Scholar 

  • Bändel, K. 1975. Die Entwicklung der Schale im Lebenslauf zweier Gastropodenarten;Buccinum undatum undXancus angulatus (Prosobranchier). - Biomineralisation8: 67–91, Stuttgart.

    Google Scholar 

  • — 1979. Übergänge von einfachen Strukturtypen zur Kreuzlamellen-Struktur bei Gastropoden- Schalen. - Biomineralisation10: 9–38, Stuttgart.

    Google Scholar 

  • — 1981. The structure and formation of the siphuncular tube ofQuenstedtoceras compared with that ofNautilus. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen61 (2): 153–173, Stuttgart.

    Google Scholar 

  • — 1982. Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. - Facies7: 1–198, Erlangen.

    Article  Google Scholar 

  • — 1985. The ammonitella: a model of formation with the aid of the embryonic shell of archaeo-gastropods. - Lethaia19: 171–180, Oslo.

    Article  Google Scholar 

  • — 1988. Stages in the ontogeny and a model of the evolution of bivalves (Mollusca). -Paläontologische Zeitschrift62 (3/4): 217–254, Stuttgart.

    Google Scholar 

  • Bändel, K. &Boletzky, S. V. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. - The Veliger21: 213–354, Berkeley.

    Google Scholar 

  • Bändel, K. &Mikbel, S. 1985. Origin and deposition of phosphate ores from the Upper Cretaceous at Ruseifa (Amman, Jordan). - Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg59: 167–188, Hamburg.

    Google Scholar 

  • Bändel, K. &Spaeth, Ch. 1983. Beobachtungen am rezentenNautilus. - Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg54: 9–26, Hamburg.

    Google Scholar 

  • Bändel, K. &Stanley, G. D. 1989. Reconstruction and biostratinomy of Devonian cephalopods (Lamellorthoceratidae) with unique cameral deposits. - Senckenbergiana lethaea69 (5/6): 391–437, Frankfurt.

    Google Scholar 

  • Bate, R. H. 1972. Phosphatized ostracods with appendages from the Lower Cretaceous of Brazil. - Palaeontology15 (3): 379–393, London.

    Google Scholar 

  • — 1973. OnPattersoncypris micropapillosa Bate. - [In:] Sylvester-Bradley P.C. & Siveter D.J. (eds.) A stereo-atlas of ostracod shells1: 101–108, Leicester.

    Google Scholar 

  • Bayer, U. 1975. Organische Tapeten im Ammonoideen-Phragmokon und ihr Einfluß auf die Fossilisation. - Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1975 (1): 12–25, Stuttgart.

    Google Scholar 

  • — 1977a. Cephalopoden-Septen Teil 2: Regelmechanismen im Gehäuse und Septenbau der Ammoni- ten. -Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen155 (2): 162–215, Stuttgart.

    Google Scholar 

  • — 1977b. Cephalopoden-Septen. I. Konstruktionsmorphologie des Ammoniten-Septums. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen154 (3): 290–366, Stuttgart.

    Google Scholar 

  • Benmore, R. A.;Coleman, M. L. &McArthur, J. M. 1983. Origin of sedimentary francolite from its sulphur and carbon isotope composition. - Nature302: 516–518, London.

    Article  Google Scholar 

  • Berner, R. A. 1968. Calcium carbonate concretions formed by the decomposition of organic matter. - Science159: 196–197, New York.

    Article  Google Scholar 

  • Burnett, W. C. 1977. Geochemistry and origin of phosphorite from off Peru and Chile. - Bulletin of the Geological Society of America88: 813–823, New York.

    Article  Google Scholar 

  • Chamberlain, J. A. 1980. Hydromechanical design of fossil cephalopods. - [In:] House, M. R. & Senior, J.R. (eds.) The Ammonoidea. - Systematics Association Special18: 289–336. Academic Press, London, New York.

    Google Scholar 

  • Chamberlain, J. A. &Westermann G. E. G. 1976. Hydrodynamic properties of cephalopod shell ornament. -Paleobiology2: 316–331, Jacksonville.

    Google Scholar 

  • Cressey, R. &Boxshall, G. 1989.Kabatarina pattersoni, a fossil parasitic copepod (Dichelestiidae) from a Lower Cretaceous fish. - Micropaleontology35 (2): 150–167, London.

    Article  Google Scholar 

  • Cressey, R. &Patterson, C. 1973. Fossil parasitic copepods from a Lower Cretaceous fish. - Science180: 1283–1285, New York.

    Article  Google Scholar 

  • Crick, G. C. 1898. On the muscular attachment of the animal to its shell in some fossil Cephalopoda (Ammonoidea). -Transactions of the Linnean Society, Zoology (2) 7: 71–113, London.

    Google Scholar 

  • Degens, E. T. D. 1968. Geochemie der Sedimente. - 282p., Enke, Stuttgart.

    Google Scholar 

  • Denton, E. &Gilpin-Brown 1961. The buoyancy of the cuttle-fish,Sepia officinalis (L.). - Journal of the Marine Biological Association of the United Kingdom41: 319–342, Plymouth.

    Google Scholar 

  • — 1966. On the buoyancy of the pearlyNautilus. - Journal of the Marine Biological Association of the United Kingdom46: 723–759, Plymouth.

    Google Scholar 

  • — 1973. Flotation mechanisms in modern and ancient cephalopods. - Advances in Marine Biology11: 197–268, London.

    Article  Google Scholar 

  • Drushchits, V. V. &Doguzhaeva, L. 1974. Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea). - Paleontological Journal1: 37–48, Moscow.

    Google Scholar 

  • Dzik, J. 1978. A myodocopid ostracode with preserved appendages from the Upper Jurassic of the Volga River Region (USSR). -Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1978 (7): 393–398, Stuttgart.

    Google Scholar 

  • Ebel, K. 1985. Gehäusespirale und Septenform bei Ammoniten unter Annahme vagil benthischer Lebensweise. -Paläontologische Zeitschrift59 (1/2): 109–123, Stuttgart.

    Google Scholar 

  • — 1990. Swimming abilities of ammonites and limitations. - Paläontologische Zeitschrift64 (1/2): 25–37, Stuttgart.

    Google Scholar 

  • Embry, A. F. 1984. The Schei Point and Blaa Mountain Groups (Middle-Upper Triassic), Sverdrup Basin, Canadian Arctic Archipelago. - Geological Survey of Canada Paper83 (1 b): 327–336, Ottawa.

    Google Scholar 

  • Erben, H. K. &Reid, R. E. 1971. Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite. - Biomineralisation3: 22–31, Stuttgart.

    Google Scholar 

  • Grandjean, F. 1910. Le siphon des ammonites et des bélemnites. - Bulletin de 1a Société géologique de France (4)10: 496–519, Paris.

    Google Scholar 

  • Henderson, R. 1984. A muscle attachment proposal for septal function in Mesozoic ammonites. - Palaeontology27: 461–486, London.

    Google Scholar 

  • Heptonstall, W. B. 1970. Buoyancy control in ammonites. - Lethaia3: 317–328, Oslo.

    Article  Google Scholar 

  • Hewitt, R. A. 1985. Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen170: 273–290, Stuttgart.

    Google Scholar 

  • Hewitt, R. A. &Westermann, G. E. G. 1983. Mineralogy, structure and homology of ammonoid siphuncle. -Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen165: 378–396, Stuttgart.

    Google Scholar 

  • — 1986. Function of complexly fluted septa in Ammonoid shells. I. Mechanical Principles and functional Models. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen172 (1): 47–69, Stuttgart.

    Google Scholar 

  • — 1987. Function of complexly fluted septa in Ammonoid shells. II. Septal Evolution and Conclusions. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen174 (2): 135–169, Stuttgart.

    Google Scholar 

  • Jones, D. 1961. Muscle attachment impressions in a Cretaceous ammonite. - Journal of Paleontology35: 502–504, Menasha, Wisconsin.

    Google Scholar 

  • Jordan, R. 1968. Zur Anatomie mesozoischer Ammoniten nach Strukturelementen der Gehäuseinnenwand. - Beihefte zum Geologischen Jahrbuch77: 3–64, Hannover.

    Google Scholar 

  • Kennedy, W. J. &Cobban, W. A. 1976. Aspects of ammonoid biology, biogeography and biostratigraphy. -Special Papers in Palaeontology17: 94p., London.

    Google Scholar 

  • Kulicki, C. 1979. The Ammonite Shell: Its structure, development and biological significance. - Palaeontologica Polonica39: 79–142, Warszawa.

    Google Scholar 

  • Kulicki, C. & Mutvei, H. 1988. Functional Interpretation of Ammonoid Septa. - [In:] Wiedmann, J. & Kullmann, J. (eds.) Cephalopods Present and Past: 13–718, Stuttgart.

  • Landmann, N. H. 1988. Early ontogeny of Mesozoic Ammonites and Nautilids. - [In:] Wiedmann, J. & Kullmann, J. (eds.) Cephalopods Present and Past: 215–228, Stuttgart.

  • Landmann, N. H. &Bändel, K. 1985. Internal structures in the early whorls of Mesozoic ammonoids. -American Museum of Natural History, Novitates2823: 21 p., New York.

    Google Scholar 

  • Maconell, D. 1973. Apatite, its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. - 111 p. Springer, New York, Wien.

    Google Scholar 

  • Martill, D. M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil. - Palaeontology31 (1): 1–18, London.

    Google Scholar 

  • Müller, K. J. 1979 a. Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden. -Lethaia12: 1–27, Oslo.

    Article  Google Scholar 

  • - 1979 b. Body appendages of Paleozoic ostracodes. - [In:] Kristic, N. (ed.) Proceedings of the VII. International Symposium of Ostracods: 5–7, Belgrad.

  • — 1979 c. Ostracoden mit erhaltenen Gliedmaßen aus einem oberkambrischen Stinkkalk-Geschiebe. - Der Geschiebesammler13: 91–94, Hamburg.

    Google Scholar 

  • - 1982.Hesslandona unisulcata sp.nov. with phosphatized appendages from the Upper Cambrian “Orsten” of Sweden. - [In:] Bate, R.H. & Sheppard, L. M. (eds.) Fossil and Recent ostracods: 276-304, Chichester.

  • — 1985. Exceptional preservation in calcareous nodules. - Philosophical Transactions of the Royal Society of LondonB311: 67–73, London.

    Article  Google Scholar 

  • Müller, K. J. &Walossek, D. 1985 a. Skaracarida, a new order of Crustacea from the Upper Cambrian of Västergötland, Sweden. - Fossil and Strata17: 65 p., Oslo.

    Google Scholar 

  • — 1985 b. A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. - Transactions of the Royal Society of Edinburgh76: 161–172, Edinburgh.

    Google Scholar 

  • — 1986.Martinssonia elongata gen. et sp. n., a crustacean-like euarthropod from the Upper Cambrian “Orsten” of Sweden. - Zoologica Scripta15: 73–92, Chichester.

    Article  Google Scholar 

  • — 1987. Morphology, ontogeny, and life habit ofAgnostus pisiformis from the Upper Cambrian of Sweden. - Fossil and Strata19: 124p., Oslo.

    Google Scholar 

  • Mutvei, H. 1957. On the relations of the principal muscles in the shell inNautilus and some fossil nautiloids. - Arkiv för Mineralogi och Geologi2: 219–254, Stockholm.

    Google Scholar 

  • — 1964. Remarks on the anatomy of Recent and fossil Cephalopoda. - Stockholm Contrubutions in Geology11: 79–102, Stockholm.

    Google Scholar 

  • — 1967. On the microscopic shell structure in some Jurassic ammonoids. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen129 (2): 157–166, Stuttgart.

    Google Scholar 

  • — 1975. The mode of life in ammonoids. - Paläontologische Zeitschrift49 (31): 196–201, Stuttgart.

    Google Scholar 

  • Mutvei, H. &Reyment, R. A. 1973. Buoyancy control and siphuncle function in ammonoids. -Palaeontology16: 623–636, London.

    Google Scholar 

  • Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. - Evolution3: 103–124, Lawrence, Kansas.

    Article  Google Scholar 

  • Palframan, D. F. B. 1969. Taxonomy of sexual dimorphism in ammonites. Morphogenetic evidence inHecticoceras brightii (Pratt). - [In:]Westermann, G. E. G. (ed.) Sexual dimorphism in fossil metazoa and taxonomic implications: 126–154, Schweizerbart, Stuttgart.

    Google Scholar 

  • Parrish, J. 1986. Lithology, geochemistry, and depositional environment of the Shublik-Formation, Triassic Northern Alaska. -[In:]Tilliur I. L. &Wymer, P. (eds.) North Slope Alaska: 391–396. SEPM, Geological Society of Alaska, Anchorage.

    Google Scholar 

  • Pfaff, E. 1911. Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. - Jahrbuch der Niedersächsischen Geologischen Vereinigung1911: 207–223, Hannover.

    Google Scholar 

  • Reyment, R. A. 1958. Some factors in the distribution of fossil cephalopods. - Stockholm Contributions in Geology1: 97–184, Stockholm.

    Google Scholar 

  • Schindewolf, O. 1968. Analyse eines Ammoniten-Gehäuses. - Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse in Mainz8: 139–188, Wiesbaden.

    Google Scholar 

  • Seilacher, A. 1975. Mechanische Simulation und funktionelle Evolution des Ammoniten-Septurns. - Paläontologische Zeitschrift49 (3/4): 268–286, Stuttgart.

    Google Scholar 

  • — 1988. Why are Nautiloid and Ammonite Sutures so différent? - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen177 (1): 41–69, Stuttgart.

    Google Scholar 

  • Shulga-Nesterenko, M. 1926. Nouvelles données sur l’organisation intérieure des conques des ammonites de l’étage d’Artinsk. - Bulletin de 1a Société des Naturalistes de Moscou Section Géologique2, 34: 81–99, Moscou.

    Google Scholar 

  • Spath, L. F. 1919. Notes on ammonites. - Geological Magazine56: 27–35, London.

    Google Scholar 

  • Tanabe, K. &Shigeta, Y. 1987. Ontogenetic shell variation and streamlining of some Cretaceous ammonites.- Transactions and Proceedings of the Palaeontological Society of Japan147: 165–179, Tokyo.

    Google Scholar 

  • Teichert, C. 1964. Morphology of hard parts. - [In:]Moore R. C. (ed.) Treatise on Invertebrate Paleontology, Pt. L Mollusca3: K13- K53, Geological Society of America, New York and University of Kansas Press, Lawrence, Kansas.

    Google Scholar 

  • Tozer, E. T. D. 1973. Lower and Middle Triassic ammonoids and bivalves from Nordaustlandet (Spitsbergen), collected by Dr. Oskar Kulling in 1931. - Geologiska Föreningen i Stockholm Förhandlingar95 I: 99–104, Oslo.

    Google Scholar 

  • Ward, P. 1985. Chamber formation periodicity inNautilus. - Paleobiology11: 438–450, Jacksonville.

    Google Scholar 

  • — 1986. Compensatory buoyancy change inNautilus macrompbalus. - The Veliger28: 356–368, Berkeley.

    Google Scholar 

  • — 1987. The Natural History ofNautilus. - 267p., Allen & Unwin, London, Sydney, Wellington.

    Google Scholar 

  • Ward, P. &Greenwald, L. 1982. Chamber refilling inNautilus. - Journal of the Marine Biological Association of the United Kingdom62: 469–475, Plymouth.

    Article  Google Scholar 

  • Ward, P. &Martin, A. 1978. On the buoyancy control of the PearlyNautilus. - Journal of Experimental Zoology205: 5–12, New York.

    Article  Google Scholar 

  • Weitschat, W. 1983 a. Ostracoden (O. Myodocopida) mit Weichkörper-Erhaltung aus der Unter-Trias von Spitzbergen. -Paläontologische Zeitschrift57 (3/4): 309–323, Stuttgart.

    Google Scholar 

  • — 1983b. OnTriadocypris spitsbergensis Weitschat. - [Im] Bate, R.H.; Neale, J.W.; Sheppard, L.M. & Siveter, D.J. (eds.) A stereo-atlas of ostracod shells10: 127–138, London.

    Google Scholar 

  • — 1986. Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. - Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg61: 249–279, Hamburg.

    Google Scholar 

  • Weitschat, W. &Lehmann, U. 1983. Stratigraphy and ammonoids from the Middle Triassic Botneheia-Formation(Daonella-Shales) of Spitsbergen. - Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg54: 27–54, Hamburg.

    Google Scholar 

  • Westermann, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. - Life Science Contributions of the Royal Ontario Museum78: 39p., Ontario.

    Google Scholar 

  • — 1975. Model of origin, function and fabrication of fluted cephalopod septa. -Paläontologische Zeitschrift49 (3): 235–253, Stuttgart.

    Google Scholar 

  • — 1982. The connecting ring ofNautilus and Mesozoic ammonoids: implications for ammonoid bathymetry. - Lethaia15: 373–384, Oslo.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitschat, W., Bändel, K. Organic components in phragmocones of boreal triassic ammonoids: Implications for ammonoid biology. Paläont. Z. 65, 269–303 (1991). https://doi.org/10.1007/BF02989845

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989845

Keywords

Navigation