Skip to main content
Log in

Post-mortem behaviour of Early Paleozoic nautiloids and paleobathymetry

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Kurzfassung

Die vielgestaltigen und oft vollständig erhaltenen Schalen von ordovizisch-silurischen Nautiloideen konnten wahrscheinlich nicht lange auf der Meeresoberfläche treiben, sogar wenn die Tiere dort starben. Das Lumen des Phragmacons war groß verglichen mit dem verlorenen Weichkörper, und die Kammern enthielten im lebenden Tier nicht nur Flüssigkeit sondern auch Gas mit weniger als 1 atm. Nach dem Tode und Entfernung oder teilweiser Verwesung des Weichkörpers verursachte dieser Unterdruck in wenigen Stunden oder Tagen das Fluten eines Teils der Kammern durch Meerwasser. Während oder nach dem Sinken der leeren Schale konnten die dünnen Septen von oberflächennah lebenden Nautiloideen unter umgekehrtem, zur Mündung gerichtetem, hydrostatischen Druck leicht nachgeben und brechen. Diese Art von Druckladung und Implosion der Septen geschah wahrscheinlich durch plötzlichen Bruch (?Boden-Aufschlag) des Siphos in einer apikalen Kammer, im Bereich der maximalen Lebenstiefe der jeweiligen Art. Das schnell folgende Einbrechen der adoralen Septen endete wahrscheinlich an relativ stärkeren Septen, die dicker waren und/oder durch teilweises Fluten der dahinter liegenden Kammer gestützt waren. Nach diesem Szenario betrug die minimale Ablagerungstiefe der silurischen Nautiloideen von Böhmen etwa 65 m. Alternative Szenarios, wo dieselben Septen unter (Membran-)Spannung (adapikal) brechen, wie bislang angenommen, oder wo Druckunterschiede in benachbarten Kammern durch Flutung entstanden, resultieren in 160 m minimale Wassertiefe für diese Fazies. Die Septen vieler kleinerer Silur-Nautiloideen, die in über 100–300 m Wassertiefen lebten, waren zu dick um nachzugeben und brachen auch kaum unter Spannung, weil die Gehäuse bei dem hohen Wasserdruck wahrscheinlich schneller geflutet wurden als sie absanken.

Abstract

It is unlikely that the intact or commonly preserved varieties of Ordovician-Silurian nautiloid shells were able to drift for any distance at the surface of the sea even if they died there. Their cameral capacity was much larger than the volume of the extracted or decayed body, and it would have contained a partial vacuum and cameral liquid when they were alive. The closely spaced and thin septa of the shallow-water adapted species were liable to buckle in compression and then implode in local tension during reverse hydrostatic loading by water pressure. This reverse loading and internal implosion of the septa was probably initiated by the sudden cameral refilling of an apical chamber caused by the depositional rupture of the apical siphuncle at or near the maximum habitat depth of these species. The instantaneous buckling of the more adorai septa was potentially terminated by variations in the septum thickness and cameral fill-fractions at that time, and they imply that some of the Silurian nautiloids from Bohemia were deposited at a minimum depth of about 65 m. Alternative interpretations involving the breakage of the same septa in tension, or buckling due to the difference in pressure between adjacent flooded chambers, set a maximum depth limit of about 160 m for the same facies. Many of the smaller Silurian nautiloids were unlikely to buckle during refilling, and they were potentially flooded faster than they could sink, below a depth of 100–300 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bogolepova, O. K. &Holland, C. H. 1995. Concentrations of Silurian nautiloid cephalopods form Russia and Kazakhstan. - Acta Palaeontologica Polonica40: 429–436, Warsaw.

    Google Scholar 

  • Boston, W.B. &Mapes, R.H. 1991. Ectocochliate cephalopod taphonomy. - [In:]Donovan, S.K. (ed.) The Processes of Fossilization: 220–240, London (Belhaven Press).

    Google Scholar 

  • Brett, C.E.;Boucot, A.J. &Jones, B. 1993. Absolute depths in Silurian benthic assemblages.- Lethaia26: 25–40, Oslo.

    Article  Google Scholar 

  • Burrett, C.;Stait, B. &Laurie, J. 1983. The deep, the dark and the dirty: An Ordovician shelf to basin transition in southern Tasmania. - Geological Society of Australia Abstracts9: 198–199, Canberra.

    Google Scholar 

  • Burrett, C;Stait, B.;Sharples, C. &Laurie, J. 1984. Middle-Upper Ordovician shallow-platform to deep basin transect, southern Tasmania, Australia. - [In:]Bruton, D. L. (ed.) Aspects of the Ordovician System. - Palaeontological Contributions from the University of Oslo, Number 295: 149–157, Oslo.

  • Chamberlain, J. A. 1978. Permeability of the siphuncular tube ofNautilus: its ecologic and paleoecologic implications. -Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1978: 129–142, Stuttgart.

    Google Scholar 

  • Chamberlain, J. A.;Ward, P.D. &Weaver, J. S. 1981. Post-mortem ascent ofNautilus shells: implications for cephalopod paleobiogeography. - Paleobiology7: 494–509, Lawrence/Kansas.

    Google Scholar 

  • Chen, Jun-Yuan 1988. Ordovician changes in sea-level. - New Mexico Bureau of Mines and Mineral Resources Memoir44: 387–404, Socorro/New Mexico.

    Google Scholar 

  • Chen, Jun-Yuan &Lindström, M. 1991. Cephalopod Septal Strength Indices (SSI) and depositional depth of Swedish orthoceratite limestone. - Geologica et Palaeontologica25: 5–18, Marburg.

    Google Scholar 

  • Collins, D. H. &Minton, P. 1967. Siphuncular tube ofNautilus. - Nature216: 916–917, London.

    Article  Google Scholar 

  • Cooper, J. &Palmer, C. P. 1974. Beak marks on cuttle ‘bones’. - Conchologist’s Newsletter48: 359–361, Reigate.

    Google Scholar 

  • Crick, R. E. 1983. The practicality of vertical cephalopod shells as paleobathymetric markers. - Geological Society of America Bulletin94: 1109–1116, Boulder/Colorado.

    Article  Google Scholar 

  • Denton, E.J. &Gilpin-Brown, J.B. 1961. The effect of light on the buoyancy of the cuttlefish. - Journal of the Marine Biological Association of the United Kingdom41: 343–350, Cambridge.

    Google Scholar 

  • —- 1973. Floatation mechanism in modern and fossil cephalopods. -Advances in Marine Biology11: 197–268, New York.

    Article  Google Scholar 

  • Evans, D. H. 1992. Phragmocone implosion in Ordovician nautiloids and the function of siphonal diaphragms and endocones. -Palaeontology35: 585–595, London.

    Google Scholar 

  • Ferretti, A. &Kříz, J. 1995. Cephalopod limestone biofacies in the Silurian of the Prague Basin. - Palaios10: 240–253, Lawrence/Kansas.

    Article  Google Scholar 

  • Frey, R. C. 1989. Paleoecology of a well-preserved nautiloid assemblage from a late Ordovician shale unit, southwestern Ohio.- Journal of Paleontology63: 604–620, Lawrence/Kansas.

    Google Scholar 

  • Grahn, Y. 1986. Orthocone nautiloid orientations in Arenig and Llanvirn limestones of Öland, Sweden. - Geologiska Föreningens 1 Stockholm Förhandlingar108: 321–330, Stockholm.

    Google Scholar 

  • Hewitt, R. A. 1993. Relation of shell strength to evolution in the Ammonoidea. [In:]House, M. R. (ed.) The Ammonoidea: Environment, Ecology and Evolutionary Change. - Systematics Association Special Volume47: 35–56, Oxford (Oxford University Press).

    Google Scholar 

  • Hewitt, R. A.;Dokainish, M. A.;El Aghoury, M. &Westermann, G.E.G. 1989. Bathymetric limits of a Carboniferous orthoconic nautiloid deduced by finite element analysis. - Palaios4: 157–167, Tulsa/Okla.

    Article  Google Scholar 

  • Hewitt, R. A.;Kluessendorf, J. &Mikulic, D. 1987. Taphonomic control of Silurian nautiloid cephalopod faunas in reef and non-reef environments. - Abstracts with Programs19: 702, Boulder/Co.

    Google Scholar 

  • Hewitt, R. A. &Watkins, R. 1980. Cephalopod ecology across a late Silurian shelf tract. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen160: 96–117, Stuttgart.

    Google Scholar 

  • Hewitt, R. A. &Westermann, G. E. G. 1987.Nautilus shell architecture. - [In:]Saunders, W. B. &Landman, N. H. (eds.)Nautilus: The biology and paleobiology of a living fossil: 435–461, New York (Plenum Press).

    Google Scholar 

  • — 1990.Nautilus shell strength variance as an indicator of habitat depth limits. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen179: 71–95, Stuttgart.

    Google Scholar 

  • Holland, C. H. 1994. Aptychopsid plates (nautiloid cephalopod opercula) from Wales. - Geological Curator6: 25–27, London.

    Google Scholar 

  • Holland, C. H.;Gnoli, M. &Histon, K. 1994. Concentrations of Palaeozoic nautiloid cephalopods. - Bollettino della Società Paleontologica Italiana33: 83–99, Modena.

    Google Scholar 

  • Hurst, J. M. 1976. The depths inhabited by Silurian brachiopod communities: comment and reply. - Geology4: 709–712, Boulder/Co.

    Article  Google Scholar 

  • Isenberg, C. 1992. The science of soap films and soap bubbles. - 188 pp., New York (Dover Publications).

    Google Scholar 

  • Kelly, A. 1901. Beiträge zur mineralogischen Kenntnis der Kalkausscheidungen im Tierreich. - Jenaische Zeitschrift35: 429–494, Jena.

    Google Scholar 

  • Kříz, J. 1979. Silurian Cardiolidae (Bivalvia). - Sbornik Geologickych Věd Paleontologie22: 1–157, Praha.

    Google Scholar 

  • — 1984. Autecology and ecogeny of Silurian Bivalvia. - Special Papers in Palaeontology32: 183–195, London.

    Google Scholar 

  • — 1991. The Silurian of the Prague Basin (Bohemia) - tectonic, eustatic and volcanic controls on facies and faunal development. - Special Papers in Palaeontology44: 179–203, London.

    Google Scholar 

  • Kříz, J. &Serpagli, E. 1993. Upper Silurian and lowermost Devonian Bivalvia of Bohemian type from South-Western Bohemia. - Bollettino della Società Paleontologica Italiana32: 289–347, Modena.

    Google Scholar 

  • Neuffer, T. 1990. Die Verdriftung vonNautilus. - Archaeopteryx8: 115–126, Eichstätt.

    Google Scholar 

  • Reyment, R. A. 1958. Some factors in the distribution of fossil cephalopods. - Stockholm Contributions in Geology1: 97–184, Stockholm.

    Google Scholar 

  • Ross, C. T. F. 1990. Pressure vessels under external pressure: statics and dynamics. - 249 pp., Amsterdam (Elsevier).

    Google Scholar 

  • Saunders, W. B. &Spinoza, C. 1979.Nautilus movement and distribution in Palau, Western Caroline Islands. - Science204: 1199–1201, Washington/D.C.

    Article  Google Scholar 

  • Schwarz, E. H. L. 1894. The Aptychus. - Geological Magazine, New Series Decade IV1: 454–459, London.

    Google Scholar 

  • Shabica, S.V. &Boucot, A.J. 1976. The depths inhabited by Silurian brachiopod communities: Comment and reply. - Geology4: 132, 187–189, Boulder/Co.

    Article  Google Scholar 

  • Stridsberg, S. 1988. A stray cephalopod from the late Silurian of Sardinia. - Bollettino della Società Pa-leontologica Italiana27: 83–85, Modena.

    Google Scholar 

  • — 1990. Internal shell destruction in some Silurian nautiloids. - Paläontologische Zeitschrift64: 213–220, Stuttgart.

    Google Scholar 

  • Teeter, J.W. 1978. Cephalopod touch marks from the Craigleith Member, Whitby Formation (Ordovician) of central Ontario. -Journal of Paleontology52: 178–181, Lawrence/Kansas.

    Google Scholar 

  • Ward, P. D. 1987. The Natural History of Nautilus. - 267 pp., Boston (Allen & Unwin).

    Google Scholar 

  • Ward, P.D. &Boletzky, S. Von 1984. Shell implosion depth and implosion morphologies in three species ofSepia (Cephalopoda) from the Mediterranean Sea. - Journal of the Marine Biological Association of the United Kingdom64: 955–966, Cambridge.

    Article  Google Scholar 

  • Watkins, R. 1991. Guild structure and tiering in a high-diversity Silurian community. - Palaios8: 325–338, Lawrence/Kansas.

    Article  Google Scholar 

  • Weaver, J. S. &Chamberlain, J. A. 1976. Equations for the post-mortem sinking of cephalopod shells and the sinking ofNautilus. Paleobiology2: 8–18, Menlo Park/C.A.

    Google Scholar 

  • Westermann, G. E. G. 1973. Strength of concave septa and depth limits of fossil cephalopods. - Lethaia6: 373–403, Oslo.

    Google Scholar 

  • — 1977. Form and function of orthoconic cephalopods. - Paleobiology3: 300–321, Menlo Park/C.A.

    Google Scholar 

  • — 1981. Post-mortem septal implosion by sinking and habitats of Palaezoic nautiloids. - Programs with Abstracts, Geological Association of Canada and Mineralogical Association of Canada, Joint Annual Meeting6: A-16.

    Google Scholar 

  • — 1985. Post-mortem descent with septal implosion in Silurian nautiloids. -Paläontologische Zeitschrift59: 79–97, Stuttgart.

    Google Scholar 

  • Witzke, B. J. &Glenister, B. F. 1987. Upper Ordovician Maquoketa Formation in the Graf Area, eastern Iowa. - Geological Society of America Centennial Field Guide - North-Central Section: 103–108, Boulder/Co.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewitt, R.A., Westermann, G.E.G. Post-mortem behaviour of Early Paleozoic nautiloids and paleobathymetry. Paläont. Z. 70, 405–424 (1996). https://doi.org/10.1007/BF02988081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988081

Keywords

Navigation