Skip to main content
Log in

Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken

Morphology and formation of the early ontogenetic shells of conchiferan mollusks

  • Published:
Facies Aims and scope Submit manuscript

Zusammenfassung

Die Arbeit behandelt die frühontogenetische Mollusken-Entwicklung der Schale und der diese bildenden Epithelien. Speziell werden Archaeogastropoden, Ammoniten und Neritaceen behandelt und mit einigen ausgewählten höheren Gastropoden verglichen, Archaeogastropoden, Neritaceen und höhere Gastropoden sind paläontologisch gut trennbare Gruppen, wenn die Bildung und Morphologie der frühontogenetischen Schalen verglichen werden. Eine Verbindung zwischen Archaeogastropoden und Ammoniten zeigt sich in der Art der Mineralisierung der organischen Primärschälchen. Cephalopoden sind generell eine ziemlich einheitliche Gruppe der Mollusken, deren Vorfahren den Vorfahren der Archaeogastropoden nahe verwandt waren. Neritaceen und höhere Schnecken verbindet die innere Befruchtung sowie der Besitz einer echten Larve, die den Archaeogastropoden wie auch den Cephalopoden fehlt. Die Ergebnisse werden in einem Schema des Entwicklungsablaufes in der Ontogenese dargestellt und zur Phylogenese des Molluskenstammes in Bezug gebracht. Hierzu werden auch einige Entwicklungsabläufe bei Käferschnecken, Muscheln und Scaphopoden miteinbezogen. Es erweist sich, daß einige in der Systematik bisher noch bewertete Eigenschaften und Merkmale nur sehr mit Vorsicht genutzt werden dürfen, während andere bisher wenig beachtete Kriterien mehr Aussagekraft besitzen als bisher vermutet. Die Bildung der Schalendrüse erweist sich als die zentrale Erfindung der Mollusken, die vermutlich während des oberen Kambriums die Conchifera entstehen ließ. Mit vielen Beispielen wird belegt, daß innerhalb aller behandelten Molluskengruppen eine Ausdeutung fossiler Schalenreste nur dann zu sinnvollen Ergebnissen führt, wenn die Bildungsweise der Schale bei rezenten Verwandten gut untersucht ist. Umgekehrt zeigt es sich, daß Modelle der Evolution der Mollusken, die nur auf Rezentbefunden basieren, in der Regel wenig Ähnlichkeit mit dem tatsächlichen Ablauf der Geschehnisse aufweisen.

Summary

The development of the early ontogenetic shell and the epithelia forming it is traced in archaeogastropods, ammonites, and neritaceans and is compared with that of some selected higher gastropods. Results are integrated into a scheme of evolution of molluscs. Here developmental stages of ontogeny are related to the evolution of mollusc classes, especially those of the conchifers. To do so in a more general way polyplacophoran, bivalve and scaphopod ontogenies are described with few examples.

The archaeogastropods form their primary shell in a way that is different from all other gastropod orders (Chapter 2). Here a bilaterally symmetrical purely organic shell is mechanically deformed by force of the soft body from the inside and the outside. During the transition from the free swimming stage to the crawling young the shell is thus pressed into trochospiral shape and mineralized rapidly afterwards by growth of aragonitic needles in the organic shell. In contrast to current theories about gastropod body torsion the coiling of the shell of archaeogastropods is independent from twisting of the soft parts inside it. This is demonstrated by the cuplike patellacean archaeogastropods. Here a bilaterally symmetrical shell can be produced by a normally torted animal. Similar independence of shell and body torsion can also be observed in quite different and unrelated gastropod groups outside of the archaeogastropods. Torsion has nothing to do with the ability of the embryo to withdraw into its shell, but is the result of differential growth of epithelia, mainly those of the visceral mass. Due to it foot and mantle cavity are brought into the right position needed in benthic life.

The early ontogentic shell of fissurellacean archaeogastropods shows several features of the same systematic value as those used in taxonomy but usually suggesting a different system. The formation of a slit occurs late during ontogeny and place of occurrence as well as absence and presence should not be overemphazised in systematics of molluscs. Shell pores also occur in these gastropods and thus are not restricted to bivalves and polyplacophores. The primary shell of the archaeogastropod can be a tool to differenciate these from all other gastropods including the Neritacea. An account of different morphologies and sculptures of the primary shell is provided.

Secretion and mineralization of the early ontogenetic shell of two Mesozoic ammonites are described and reconstructed in detail (Chapter 3). The absence of growth lines indicates the formation of the whole embryonic conch in uninterrupted contact to the gland cells (periostracum cells). After detachment from the latter the whole outer shell became mineralized, while the inner conch walls remained of organic structure. These and the whole interior of the conch were covered by mineral layers afterwards. Tissue shell connection migrated from the inner surface of the inner lip to the surface of the first septum and from there to the internal side of the third chamber during formation of the siphuncular system. The construction of the first septum preceeded that of the original siphuncular rod, while following septa were produced in connection to each segment of the siphuncle. Results are compared with some of the more modern interpretations of ammonite embryonic shell construction and function. A comparison with the development of the embryonic shell of recentSepia, Spirula, andNautilus and some fossil cephalopods provides two general trends in cephalopods: First, that the shape and mode of mineralization of the primary shell is connected to egg size and not to systematic placement, and second, that recent and fossil cephalopods alike lack a true larval stage and have extremely yolk rich eggs if compared with most other molluscs. Shape, size and structure of embryonic shells of fossil cephalopods allow the reconstruction of the course early ontogeny took. Shape size and structure of the scars formed by the attachment of the body to the shell makes it possible to differentiate endocochleates from ectocochleates. The data presented indicate that original cephalopods and primary archaeogastropods had a common ancestor, living in the Upper Cambrian, with direct development, a feature still present in both groups. First cephalopods can be reconstructed a bit more in detail and with more functional reason than found in literature up to now (Chapter 3.6.3).

The Neritacea (Chapter 4) are an independent group of gastropods, neither archaeogastropod, nor of meso-neogastropod relation. This is shown in their anatomy in their embryonic development, and in their shell morphology. The latter is analyzed in detail and will allow in the future to differentiate fossil nertiaceans from other molluscs. The shell detaches from the cells of the mantle during early ontogeny, before the visceral mass is covered by it. Early mineralization and growth lines as well as growth around the slightly torted body characterizes the embryonic shell. Its mode of coiling differs from that of the strongly convolute larval shell. These characters separate neritaceans with free larvae from all other gastropods, but when the larval phase occurs within the egg capsule a separation from higher gastropods with similar development is probelmatic.

Within Neritacea as well as within other unrelated gastropod families and orders limpet-like species are found (Chapter 4.5). The change from the coiled early ontogenetic shell to the cup-like adult shell goes along with a rearrangement of tissue shell attachment and a loss of the operculum. The animal no longer withdraws into its shell, but rather pulls its shell down onto the substrate, when in danger. The result is an externally and internally similar shell which also may become extremely similar to shells of untorted molluscs, like recent and fossil monoplacophores. It is documented that neither morphology of the internal mould, nor muscle scars, or apex position provide sound systematic evidence. The later can be gathered only from the early ontogenetic shell, but here restrictions must be taken into account.

The course of the embryonic development of higher gastropods (Chapter 5.1) is quite variable because a true larval phase is developed. During this phase plankton is eaten or this normal food of the free larva is substituted by nutrients provided within the egg capsule. The mode of development of a free larva provides systematic information expressed by the size, shape and sculpture of the shell. Where larval food is present within the egg capsule, embryonic development is adapted to this, and systematic information is lost. A number of cases shows how liquid yolk, yolk grains, and nurse eggs are taken by embryos at different stages of development. Distance from marine way of life masks the indirect course of development strongly. The fresh-water and land snails in addition, provide a good model for the formation of internal shells, that can be applied to the cephalopods as well. Here three types of tissue, originating in the shell gland and characterizing the mantle, are produced simultaneously. The muscle mantle can close over the shell gland before shell formation, thus making the shell an internal one.

Differences present in the ontogeny of molluscs makes it possible to gather information regarding the course in which evolution proceeded (Chapter 5.2). Polyplacophores branched off prior to the invention of an embryonic shell gland. Bivalves, scaphopods, archaeogastropods, cephalopods and higher gastropods developed their specific way of early shell formation independently from untorted bilaterally symmetrical common ancestors, probably at the end of the Cambrian. The protostome or deuterostome development, the type of swimming larva and the mode and way of feeding are variable features and of little use for reconstructing the phylogeny. Direct development with a adult organs appearing without transitional organs is the original type, present in archaeogastropods and cephalopods. Larvae having to metamorphose transitional organs into adult ones and thus carrying out indirect development characterize all higher gastropods and have developed independently within the bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • ABBOTT, R.T. (1974): American Seashells.—663 S., New York (Van Nostrand)

    Google Scholar 

  • ANDERSON, D.T. (1965): The reproduction and early life histories of the gastropodsNotoacmaea petterdi, Chiazacmaea flammea, andPatelloidea alticostata.—Proc. Linn. Soc. New South Wales,90, 242–251, 17 Abb.

    Google Scholar 

  • ANDREWS, E.A. (1936): Spherulites as specific characters in certain gastropods.—Trans. Amer. Microsc. Soc.,56, 237–242, 3 Abb., Lancaster

    Article  Google Scholar 

  • AMIO, M. (1963): A comparative embryology of marine gastropods, with ecological considerations.— J. Shimonoseki Coll. Fish.,12/(2,3), 229–353, 52 Abb., Shimonoseki

    Google Scholar 

  • ARKELL, W.J. (1957): Introduction to Mesozoic Ammonoidea.—Tratise on Invertebrate Paleontology, part L, Mollusca,4, L81-L129, Lawrence (Univ. Kansas Press)

    Google Scholar 

  • BABIO, C.R. & THIRIOT-QUIEVREUX, C. (1975): Trochidae, Skeneidae et Skeneopsidae (Mollusca, Prosobranchia) de la region de Roscoff.—Cahiers Biol. Marine,16, 521–530, 4 Taf.

    Google Scholar 

  • BANDEL, K. (1974): Fecal pellets of Amphineura and Prosobranchia (Mollusca) from the Caribbean Coast of Columbia (South America).—Senckenbergiana marit.,6, 1–31, 14 Abb., Frankfurt

    Google Scholar 

  • — (1975a): Embryonalgehäuse karibischer Meso- und Neogastropoden (Mollusca).—Abh. Akad. Wiss. Lit., math.-naturwiss. Kl.,1975/1, 1–133, 21 Taf., 16 Abb., Wiesbaden

    Google Scholar 

  • — (1975b): Embryonale und larvale Schale einiger Prosobranchier (Gastropoda, Mollusca) der Oosterschelde (Nordsee).—Hydrobiol. Bull.,9, 3–22, 26 Figs., Amsterdam

    Article  Google Scholar 

  • — (1975c): Das Embryonalgehäuse mariner Prosobranchier der Region von Banyuls-Sur-Mer. 1. Teil.—Vie et Milieu,25, 83–118, 6 Taf., Banyuls-Sur-Mer

    Google Scholar 

  • — (1975d): Entwicklung der Schale im Lebensablauf zweier Gastropodenarten:Buccinum undatum undXancus angulatus (Prosobranchier, Neogastropoda).—Biomineralisation,8, 67–91, 17. Abb., 8 Taf., Stuttgart

    Google Scholar 

  • — (1976a): Morphologie der Gelege und ökologische Beobachtungen an Muriciden (Gastropoda) aus der südlichen Karibischen See.—Verh. Nat. Ges. Basel,85, 1–32, 20 Abb., Basel

    Google Scholar 

  • — (1976b): Morphologie der Gelege und ökologische Beobachtungen an Buccinaceen (Gastropoda) aus der südlichen Karibischen See.—Bonner Zool. Beitr.,27, 98–133, 19 Abb., Bonn

    Google Scholar 

  • — (1976c): Die Gelege karibischer Vertreter aus den Überfamilien Strombacea, Naticacea und Tonnacea (Mesogastropoden, Mollusca).—Mitt. Inst. Colombo-Aleman Invest. Cient. Santa Marta (Kolumbien),8, 105–139, 13 Abb., Giessen

    Google Scholar 

  • — (1976d): Observation on spawn, embryonic development and ecology of some Caribbean higher Neogastropoda (Mollusca),—Veliger,19, 176–193, 17 Abb., Berkeley

    Google Scholar 

  • — (1977a): Übergänge von der Perlmutter-Schicht zu prismatischen Schichttypen bei Mollusken.—Biomineralisation,9, 28–47, 2 Abb., 5 Taf. Stuttgart

    Google Scholar 

  • — (1977b): Die Herausbildung der Schraubenschicht der Pteropoden.—Biomineralisation,9, 73–85, 4 Abb., 3 Taf., Stuttgart

    Google Scholar 

  • — (1979a): Übergänge von einfacheren Strukturtypen zur Kreuzlamellenstruktur bei Gastropodenschalen. —Biomineralisation,10, 9–37, 8 Taf., 5 Abb., Stuttgart

    Google Scholar 

  • — (1979b): The nacreous layer in the shell of the gastropod-family Seguenziidae and its taxonomic significance.—Biomineralisation,10, 49–61, 3 Taf., Stuttgart

    Google Scholar 

  • — (1981a): The structure and formation of the siphuncular tube ofQuenstedtoceras compared with that ofNautilus (Cephalopoda).—N. Jb. Geol. Paläont. Abh.,161/2, 153–171, 9 Abb., Stuttgart

    Google Scholar 

  • — (1981b): Struktur der Molluskenschale im Hinblick auf ihre Funktion.—Paläont. Kursbücher,1, 25–48, 17 Abb., München (Paläont. Ges.)

    Google Scholar 

  • BANDEL, K. & BOLETZKY, S.V. (1979): A comparative study of the structure, development and morphological relationships of chambered cephalopod shells.—The Veliger 21, 313–354, 99 Abb., Berkeley

    Google Scholar 

  • BANDEL, K. & CHRISTIAENS, J.: Fissurellacea and Patellacea from the Caribbean Sea (Columbia). —In Vorbereitung

  • BANDEL, K. & HEMLEBEN, C. (1975): Anorganisches Kristallwachstum bei lebenden Mollusken.— Paläont. Z.,49, 298–320, 38 Abb., Stuttgart

    Google Scholar 

  • BANDEL, K., LANDMAN, N. & WAAGE, K.M. (1981): Micro-ornament on early whorls of Mesozoic ammonites: Implications for early ontogeny.—J. Paleont.56, 386–391, 2 Abb., Tulsa

    Google Scholar 

  • BATTEN, R.L. (1975): The Scissurellidae- are they neotenously derived Fissurellids? (Archeogastropoda).— Amer. Mus. Novitates,2567, 1–29, 37 Abb., New York

    Google Scholar 

  • BATTEN, R.L. & DUMONT, M.P. (1976): Shell ultrastructure of the Atlantidae (Heteropoda, Mesogastropoda)Oxygurus andProtatlanta, with comments onAtlanta inclinata.—Bull. Amer. Mus. Nat. Hist.,157/267–310, 60 Abb., New York

  • BATTEN, R.L., ROLLINS, H.B. & GOULD, S.J. (1967): Comments on “The adaptive significance of gastropod torsion.—Evolution,21, 405–406, Lawrence

    Article  Google Scholar 

  • BIRKELUND, T. (1967): Submicroscopic structures in early growth-stages of Maastrichtian ammonites (Saghalinites andScaphites).—Medd. Dansk Geol. Forening.,17, 95–101, Taf. 1–4, Kopenhagen

    Google Scholar 

  • BIRKELUND, T. & HANSEN, H.J. (1968): Early shell growth and structur of the septa and the siphuncular tube in some Maastrichtian ammonites.—Medd. fra Dansk Geol. Forening. 18, 71–78, Taf. 1–4, Kopenhagen

    Google Scholar 

  • — (1974): Shell ultrastructure of some Maastrichtian Ammonoidea and Coleoidea and their taxonomic implications.—Kong. Dansk. Vidensk. Sel. Biol. Skrift. 20, 1–34, 7 Abb., 16 Taf. Kopenhagen

    Google Scholar 

  • BLIND, W. (1976): Die ontogenetische Entwicklung vonNautilus pompilius (LINNE).—Palaeontographica, Abt. A,153, 117–160, Stuttgart

    Google Scholar 

  • BLOCHMANN, F. (1882): Über die Entwicklung derNeritina fluviatilis, Müll.—Z. wiss. Zool.,36, 125–174, 8 Taf., Leipzig

    Google Scholar 

  • BOETTGER C.R. (1955): Beiträge zur Systematik der Urmollusken (Amphineura).—Zool. Anz. Suppl., 19, 223–256, 5 Abb., Leipzig

    Google Scholar 

  • BOGGS, C.H. (1978): Development of HawaiianDiodora.—Hawaiian Shell News,26/10, 3–4, Honolulu

    Google Scholar 

  • BONAR, D.B. & HADFIELD, M.G. (1974): Metamorphosis of the marine gastropodPhestilla sibogae Bergh (Nudibranchia, Aeolidacea).—J. exp. Biol. Ecol., 16, 227–255, 18 Abb.

    Article  Google Scholar 

  • BOLETZKY, S.V. (1974): The “larvae” of Cephalopoda: A review.—Thalassis Jugosl.,10/1–2, 45–76, 13 Taf., Zagreb

    Google Scholar 

  • BONDESEN, P. (1940): Preliminary investigations into the development ofNeritina fluviatilis L. in brackish and fresh water.—Vidensk. Medd. Dansk. Nat. For.,104, 283–318, 5 Abb., Kopenhagen

    Google Scholar 

  • BONIK, K., GRASSHOFF, M. & GUTMANN, W.F. (1976): Die Evolution der Tierkonstruktionen I–IV.—Natur und Museum,106/5,6,10, 129–143, 178–188, 303–316, Frankfurt

    Google Scholar 

  • — (1979a): Selektionszwänge in der Ontogenese—Die Entwicklung dotterreicher Eier.— Natur und Museum,109/8, 268–278, 6 Abb., Frankfurt

    Google Scholar 

  • BONIK, K., GRASSHOFF, M. & GUTMANN, W.F. (1979b): Die Evolution von Larven als Verbreitungsstadien bodenlebender Meerestiere.—Natur und Museum,109/3, 70–79, 6 Abb., Frankfurt

    Google Scholar 

  • — (1979c): Die Evolution der Zellteilung in den frühen Embryonalstadien.—Natur und Museum,109/2, 52–59, 4 Abb., Frankfurt

    Google Scholar 

  • BONIK, K., GRASSHOFF, M., GUTMANN, W.F. & KLEIN-RÖDDER R. (1977): Die Evolution der Tintenfische, ein Entwurf für das Schaumuseum.—Natur und Museum,107/8 244–250, 1 Abb., Frankfurt

    Google Scholar 

  • BOURNE, G. (1908): Contribution to the morphology of the group Neritacea of aspidobranch gastropods. I. The Neritidae.—Proc. Zool. Soc. London,43, 810–887, London

    Google Scholar 

  • BOUTAN, L. (1885): Recherches sur l'anatomie et le dévelopment de la Fissurelle.—Arch. Zool. Exp. Gén., sér. 23/4, 1–173, Paris

    Google Scholar 

  • BRANCO, W. (1880): Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden.—Palaeotographica,27, 12–81, Stuttgart

    Google Scholar 

  • CARRIKER, M.R. & PALMER, R.E. (1979): Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the OysterCrassostrea virginica.—Proc. Nat. Shellfish. Assoc. 69, 103–128, 63 Abb., Philadelphia

    Google Scholar 

  • CONKLIN, E.G. (1897): The embryology ofCrepidula.—J. Morphol.,13, 1–226

    Article  Google Scholar 

  • COX, L.R.: General characteristics of Gastropoda.—Treatise on Invertebrate Paleontology, I (1), I84–I169, Lawrence

  • CROFTS, D.R. (1929):Haliotis.—L.M.B.C. Mem. typ. Br. mar. Pl. Anim.,29, Liverpool (University Press)

    Google Scholar 

  • — (1937): The development ofHaliotis tuberculata, with special reference to the organogenesis during torsion.—Phil. Trans. Roy. Soc., B.,208, 219–268, London

    Article  Google Scholar 

  • — (1955): Muscle morphogenesis in primitive gastropods and its relation to torsion.— Proc. Zool. Soc. London,125, 711–750, London

    Google Scholar 

  • D'ASARO, C.N. (1966): The egg capsules, embryogenesis, and early organogenesis of a common oyster predator,Thais haemastoma floridana (Gastropoda, Prosobranchia).—Bull. Mar. Sci.,16, 884–914, 10 Abb., Miami

    Google Scholar 

  • — (1969): The comparative embryogenesis and early organogenesis ofBurea corrugata Perry andDistorsio clathrata Lamarck (Gastropoda, Prosobranchia).—Malacologia,9, 349–389, 18 Abb., Ann Arbor

    Google Scholar 

  • DAUPHIN, Y. (1975): Anatomie de la Protoconque et des tours initiaux deBeudanticeras beudanti (Brongniart) etDemocerae latidorsatum (Michelin).—Ann. Paléont.61, 3–16, 4 Abb., Paris

    Google Scholar 

  • — (1976): Microstructure des coquilles de Céphalopodes. I.Spirula spirula L. (Dibranchiata, Decapoda).—Bull. Mus. Nat. Hist. Nat., 3. ser.,382, 197–238, 23 Abb., Paris

    Google Scholar 

  • — (1977): Anatomie de la Protoconque et des tours initiaux deUhligella walleranti Jacob (Desmoceratidae, Ammonitina) Albien de Gourdon (Alpes-Maritimes).—Ann. Paléont.63, 77–83, Paris

    Google Scholar 

  • — (1979): Coquilles juvéniles de nautiles des îles Loyauté (Pacifique Sud).—Cahiers Indo-pacifique1/4, 447–460, 6 Abb., Montreuil

    Google Scholar 

  • DAUTERT, E. (1929): Die Bildung der Keimblätter beiPaludina.—Zool. Jb. (Anat.),50, 433–496, Leipzig

    Google Scholar 

  • DRUSHCHITS, V.V. & KHIAMI, N. (1969): Distinctive features in the early stages of ontogeny in certain early Cretaceous ammonites.—Misk. obshch. Ispytateley Prirody, Byull. Otdel. Geol.,2, 156–157, Leningrad

    Google Scholar 

  • — (1970): Structure of the septa, protoconch walls and initial whorl in early Cretaceous ammonites.—Paleont. J.,1, 26–38, Falls Church

    Google Scholar 

  • DZIK, J. (1978): Larval development of hyolithids.—Lethaia,11, 293–299, 7 Abb., Oslo

    Google Scholar 

  • — (1980): Ontogeny ofBactrotheca and related hyoliths.—Geol. Fören. Stockholm Förh., 102/3, 223–233, 8 Abb., Stockholm

    Google Scholar 

  • ERBEN, H.K. (1962): Über den Prosipho, die Prosutur und die Ontogenie der Ammonoidea.— Paläont. Z.,36, 99–108, Stuttgart

    Google Scholar 

  • — (1964): Die Evolution der ältesten Ammonoidea.—N. Jb. Geol. Paläont. Abh.,120, 107–212, Stuttgart

    Google Scholar 

  • — (1966): Über den Ursprung der Ammonoidea.—Biol. Rev.,41, 641–658, 8 Abb.

    Google Scholar 

  • ERBEN, H.K. & FLAJS, G. (1975): Über die Cicatrix der Nautiloideen.—Mitt. Geol. Paläont. Inst. Univ. Hamburg,44, 59–68, 6 Taf., 2 Abb., Hamburg

    Google Scholar 

  • ERBEN, H.K., FLAJS, G. & SIEHL, A. (1969): Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden.—Palaeontographica, A132, 154, Stuttgart

  • ERBEN, H.K. & REID, R.E.H. (1971): Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite.—Biomineralisation,3, 22–31, 2 Taf., 1 Abb., Stuttgart

    Google Scholar 

  • FIORONI, P. (1966): Zur Morphologie und Embryogenese des Darmtraktes und der transitorischen Organe bei Prosobranchiern (Mollusca, Gastropoda).—Rev. Suisse Zool.,73, 621–876, 113 Abb., Genf

    Google Scholar 

  • — (1967): Molluskenembryologie und allgemeine Entwicklungsgeschichte.—Verh. naturforsch. Ges. Basel,78, 283–307, Basel

    Google Scholar 

  • — (1970): Umwegige Entwicklung.—Naturwiss. Rundschau,23, 353–360, 13 Abb., 4 Taf., Stuttgart

    Google Scholar 

  • — (1974): Die Sonderstellung der Tintenfische.—Naturwiss. Rundschau,27, 133–143, 11 Abb., Stuttgart

    Google Scholar 

  • — (1979): Phylogenetische Abänderungen der Gastrula bei Mollusken. In SIEWING, R. (Ed.): Ontogenese und Phylogenese. Erlanger Symp. für Strukturanalyse und Evolutionsforsch., 1977, 82–100, 7 Abb., Hamburg-Berlin (Parey)

    Google Scholar 

  • FIORONI, P. & PORTMANN, A. (1968): Zur Morphogenese und der Larvalorgane vonFusus (Gastropoda, Prosobranchia).—Rev. Suisse Zool.,75, 833–882, 27 Abb., 5 Tab., Genf

    Google Scholar 

  • FIORONI, P. & SCHMEKEL, L. (1975): Entwicklung und Biotopabhängigkeit bei Gastropoden—ein entwicklungsgeschichtlicher Vergleich.—Forma et Functio,8, 209–252, 10 Abb., Pergamon Press

  • FRETTER, V. (1965): Functional studies of the anatomy of some neritid prosobranchs.—J. Zool.,147, 46–74

    Article  Google Scholar 

  • — (1969): Aspects of metamorphosis in prosobranch gastropods.—Proc. Malac. Soc. London,38, 375–386, 3 Abb., London

    Google Scholar 

  • — (1972): Metamorphic changes in the velar musculature, head and shell of some prosobranch veligers.—J. mar. biol. Ass.,52, 161–177, Plymouth

    Google Scholar 

  • FRETTER, V. & GRAHAM, A. (1962): British prosobranch mollusks.—Royal Society, London, 1–755, London

    Google Scholar 

  • FRETTER, V. & MONTGOMERY, M.C. (1968): The treatment of food by prosobranch veligers.— J. mar. biol. Ass.,48, 499–520, 4 Abb., Plymouth

    Google Scholar 

  • FISCHER, F.P. (1980): Fine structure of the larval eye ofLepidochitona cinerea L.—Spixiana,3, 53–57, 6 Abb., München

    Google Scholar 

  • FOURNIÉ, J. (1979): Etude des cellutes libres présentes à la surface interne de la coquille d'Agriolimax reticulatus (Müller), origine et rôle dans la mise en place de l'hypostracum.— Ann. Science Nat. Zool. Paris 13e série, Vol. 1, 169–185, 27 Abb., 1 Tab., Paris

    Google Scholar 

  • GARSTANG, W. (1929): The origin and evolution of larval forms.—Rep. Br. Ass. Advmt. Sci. 1928 (Glasgow), sect. D, 77–98, Glasgow

  • GIESE, K. (1978): Zur Embryonalentwicklung vonBuccinum undatum L. (Gastropoda, Prosobranchia, Stenoglossa (Neogastropoda), Buccinacea).—Zool. Jb. Anat.,100, 65–117, 20 Abb., Jena

    Google Scholar 

  • GÖTTING, K.J. (1974): Malakozoologie.—1–320, Stuttgart (G. Fischer)

    Google Scholar 

  • — (1980): Argumente für die Deszendenz der Mollusken von metameren Antezedenten.—Zool. Jb. Anat.,103, 211–218, 2 Abb., Jena

    Google Scholar 

  • GRANDJEAN, F. (1910): Le siphon des ammonites et des bélemnites.—Bull. Soc. géol. France, sér. 4,10, 496–519, Paris

    Google Scholar 

  • GUTMANN, W.F. (1974): Die Evolution der Mollusken-Konstruktion: ein phylogenetisches Modell.—In: Schäfer, W. (Ed.): Aufsätze und Reden. Senckenberg. naturforsch. Ges.,25, 1–84, Frankfurt

  • HAAS, W. (1972): Untersuchungen über die Mikro- und Ultrastruktur der Polyplacophorenschale.,— Biomineralisation,5, 1–52, 6 Abb., 18 Taf., Stuttgart

    Google Scholar 

  • HAAS, W. & KRIESTEN, K. (1974): Studien über das Mantelepithel vonLepidochitona cinera (L) (Placophora).—Biomineralisation,7, 100–109, 11 Abb., Stuttgart

    Google Scholar 

  • — (1978): Die Ästheten mit intrapigmentärem Schalenauge vonChiton marmoratus L.— Zoomorphol,90, 253–268, 15 Abb.

    Article  Google Scholar 

  • — (1982): Evolution of calcareous hardparts in primitive molluscs.—Malacologia,21, 403–418, 14 Abb., Ann Arbor

    Google Scholar 

  • HAAS, W., KRIESTEN, K. & WATABE, N. (1979): Notes on the shell formation in the larvae of the Placophora (Mollusca).—Biomineralisation,10, 1–8, 13 Abb., Stuttgart

    Google Scholar 

  • HAMADA, T., OBATA, I. & OKUTANI T. (1980):Nautilus macromphalus in captivity. —Tokai University Press, 1–80, Tokio

    Google Scholar 

  • HATSCHEK, B. (1978): Studien über die Entwicklungsgeschichte der Anneliden.—Arb. Zool. Inst. Zool. Inst. Univ. Wien,1, 277–404, Wien

    Google Scholar 

  • HESS, O. (1956): Die Entwicklung von Exogastrulakeimen bei dem Süßwasser ProsobranchierBithynia tentaculata.—Roux Archiv Entwicklungsmech.,148, 474–488, 9 Abb., Berlin

    Article  Google Scholar 

  • HOARE, R.D. & STURGEON, M.T. (1978): The Pennsylvanian gastropod generaCyclozyga andHeminthozyga and the classification of the Pseudozygopleuridae.—J. Paleont.,52, 850–858, 13 Abb., 2 Tab., Tulsa

    Google Scholar 

  • HORNY, R.J. (1963):Archaeopraga, a new problematic genus of Monoplacophoran Mollusc from the Silurian of Bohemia.—J. Paleont.,37, 1071–1073, Tulsa

    Google Scholar 

  • — (1965):Cyrolites Conrad, 1938 and its position among the Monoplacophora (Mollusca).— Sbornik Narodniho Mus. Racze,21, (B), 57–70, Prag

    Google Scholar 

  • HYMAN, L.H. (1967): The Invertebrates. Vol. 6, 1–792, New York (McGraw Hill)

    Google Scholar 

  • IHERING, H. (1922): Phylogenie und Systematik der Mollusken.—Arch. Molluskenk.,1, 1–115, Frankfurt

    Google Scholar 

  • JEFFREYS, J.G. (1865): British Conchology. Vol. 3 393 S., London (Van Voorst)

    Google Scholar 

  • JELETZKY, J.A. (1966): Comparative morphology, phylogeny, and classification of fossil Coleoidea.—Univ. Kansas Paleont. Contr., Mollusca, art. 7, 1–162, 12 Abb., 25 Taf., Lawrence

    Google Scholar 

  • JORDAN, R. (1968): Zur Anatomie mesozoischer Ammoniten nach den Strukturelementen der Gehäuse-Innenwand.— Beih. geol. Jb.,77, 1–64, 10 Taf., 26 Abb., Hannover

    Google Scholar 

  • JUNG, P. (1975): Quarternary larval gastropods from Leg 15, Site 147, Deep Sea Drilling Project, Preliminary Report.—The Veliger,18, 109–126, 120 Abb., Berkeley

    Google Scholar 

  • KAISER, P. & VOIGT, E. (1977): Über eine als Gastropodenlaich gedeutete Eiablage in einer Schale vonPseudopecten aus dem Lias von Salzgitter.—Paläont. Z.,51, 5–11, 2 Taf., Stuttgart

    Google Scholar 

  • KNIGHT, J.B., COX, L.R., KEEN, A.M., BATTEN, R.L., YOCHELSON, E.L. & ROBERTSON, R. (1960): Archaeogastropoda.—Treatise on Invertebrate Paleontology, I, Mollusca (1), I169-I309, Lawrecne

    Google Scholar 

  • KNIGHT, J.B. & YOCHELSON, E.L. (1960): Monoplacophora..—Treatise on Invertebrate Paleontology, i, Mollusca (1), i77-i83, Lawrence

    Google Scholar 

  • KNIPRATH, E. (1975): Das Wachstum des Mantels vonLymnaea stagnalis (Gastropoda).—Cytobiol.,10, 260–267, 6 Abb.

    Google Scholar 

  • — (1977): Zur Ontogenese des Schalenfeldes vonLymnaea stagnalis.—Roux. Arch.,181, 11–30, 7 Abb., Berlin

    Article  Google Scholar 

  • KWALEVSKY, M.A. (1883): Embryogénie duChiton polii Phil., avec quelques remarques sur le développement des autres Chitons.—Ann. Mus. Hist nat. Marseille,1/1–46, Marseille

  • KULICKI, C. (1974): Remarks on the embryogeny and postembryonal development of ammonites.— Acta Palaeont. Polonica,19, 201–224, Taf. 4–9, 8 Abb., Warszawa

    Google Scholar 

  • — (1975): Structure and mode of origin of the ammonite proseptum.—Acta Palaeont Polonica,20, 535–542, Taf., 38–39, 3 Abb., Warszawa

    Google Scholar 

  • KULICKI, C. (1979): The ammonite shell: Its structure, development and biological significance.— Palaeontologia Polonica,398, 97–142, Taf., 24–48, 10 Abb., Warszawa

    Google Scholar 

  • LACAZE-DUTHIERS, H., de, (1856–1857): Histoire de l'organisation et du développment du dentale.—Ann. Sci. nat., (Zool.),4/7, 171–255, Paris

    Google Scholar 

  • LALLI, C.M. & CONOVER, R.J. (1976): Microstructure of the veliger shell of gymnosomatous Pteropods (Gastropoda: Opisthobranchia).—The Veliger, 18/3, 237–240, Berkeley

    Google Scholar 

  • LEBOUR, M.V. (1936): Notes on the eggs and larvae of some Plymouth prosobranchs.—J. mar. Ass.,20, 547–565, Plymouth

    Google Scholar 

  • — (1937): The eggs and larvae of the British prosobranch with special reference to those living in the plankton.—J. mar. Ass.,22, 105–166, Plymouth

    Google Scholar 

  • LEHMANN, U. (1976): Ammoniten, 1–171, 143 Abb., Stuttgart (Enke)

    Google Scholar 

  • LEMCHE, H. (1957): A new living deep-sea mollusc of the Cambro-Devonian Class Monoplacophora.— Nature,179, 413–416, London

    Article  Google Scholar 

  • LEMCHE, H. & WINGSTRAND, K.G. (1959): The anatomy ofNeopilina galatheae Lemche, 1957.— Galathea Rept.,3, 9–71.

    Google Scholar 

  • LEWIS, J.B. (1960): The fauna of rocky shores of Barbados, West Indies—Can. J. Zool,38, 391–435

    Article  Google Scholar 

  • LINDBERG, D.R. (1979):Problacmaea moskalevi Golikov & Kussakin, a new addition to the Eastern Pacific limpet fauna.—The Veliger,22, 57–61, 40 Taf., 13 Abb., Berkeley

    Google Scholar 

  • MAPES, R.H. (1979): Carboniferous and Permian Bactritoidea (Cephalopoda) in North America.— The Univ. Kansas Paleont. Contr.64, 1–75, 14 Abb., 41 Taf., Lawrence

    Google Scholar 

  • MAREK, L. & YOCHELSON, E.L. (1976): Aspects of the biology of Hyolitha (Mollusca).—Lethaia,9, 65–82, 4 Abb., Oslo

    Google Scholar 

  • MCLEAN, J.H. (1979): A new monoplacophoran limpet from the continental shelf off Southern California.—Contr. Sci. Natur. Hist. Mus. Los Angeles County 307, 1–19, 25 Abb., Los Angeles

    Google Scholar 

  • MEISENHEIMER, J. (1897): Entwicklungsgeschichte vonLimax maximus L.I. Furchung und Keimblätterbildung.— Z. wiss. Zool.,62, 415–468, Taf., 20–23, 10 Abb., Leipzig

    Google Scholar 

  • — (1898): Entwicklungsgeschichte vonLimax maximus L. II Die Larvenperiode.—Z. wiss. Zool.,63, 573–664, Taf., 32–40, 20 Abb., Leipzig

    Google Scholar 

  • MENZIES, R.J. (1968): New species ofNeopilina, of the Cambro-Devonian Class Monoplacophora from the Milne-Edwards Deep of the Peru-Chile Trench, R/V Anton Bruun.—Mar. Biol. Assoc. India, Proc. Sympos. Mollusca, Symp. Ser.,3, 1–9, Bombay

    Google Scholar 

  • MILLER, A.K. & UNKLESBAY, A.G. (1943): The siphuncle of late Paleozoic ammonoids.—J. Paleont.17, 1–25, Tulsa

    Google Scholar 

  • MOOR, B. (1977): Zur Embryologie vonBradybaena (Eulota) fruticum Müller (Gastropoda, Pulmonata, Stylommatophora).—Zool. Jb., Anat.,97, 323–399, 27 Abb., Jena

    Google Scholar 

  • MUTVEI, H. (1957): On the relations of the principal muscles in the shell inNatilus and some fossil Nautiloids.—Arkiv Min. Geol.,2/3, 10, 219–254, 20 Taf., 24 Abb., Stockholm

    Google Scholar 

  • NAEF, A. (1921–1928): Die Cephalopoden.—Fauna und Flora des Golfs von Neapel 35. Monogr., 2 Bände, Neapel

  • — (1922): Die fossilen Tintenfische eine paläozoische Monographie.—1–322 Jena (G. Fischer)

    Google Scholar 

  • OCKELMANN, K.W. (1965): Developmental types in marine Bivalves and their distribution along the Atlantic Coast of Europe.—In: COX, L.R., & PEAKE, J.F. (Ed.): Proc. 1. Europ. Malacol. Congr., 25–35, London

  • OTTO, H. & TÖNNIGES, C. (1906): Untersuchungen über die Entwicklung vonPaludina vivipara. —Z. wiss. Zool.80, 411–514, Taf. 22–27, 29 Abb., Leipzig

    Google Scholar 

  • PEARSE, J.S., (1979): Polyplacophora.—In: GIESE, A.C., & PEARSE, J.S. (Ed.): Reproduction of marine invertebrates,5, 27–85

  • PELSENEER P. (1911): Recherches sur l'embryologie des gastéropodes.—Mem. Acad. Belg., Cl. Sci., Ser. II-3, 1–167, Brüssel

    Google Scholar 

  • PILKINGTON, M.C., (1910): Young stages and metamorphosis in an atlantid heteropod occurring off South-Eastern New Zealand.—Proc. malac. Soc. London,39, 117–124, London

    Google Scholar 

  • POJETA, J. (1978): The origin and early taxonomic diversification of pelecypods.—Phil. Trans. Roy. Soc. London, B284, 225–243, 20 Taf., 9 Abb., 2 Tab., London

    Google Scholar 

  • POJETA, J. & RUNNEGAR, B. (1976): The paleontology of the rostroconch mollusks and the early history of the phylum Mollusca.—Geol. Surv. Prof. Pap.,968, 1–88, 54 Taf., 14 Abb., 3 Tab., Washington

    Google Scholar 

  • RAVEN, C.P. (1952): Morphogenesis inLimnaea stagnalis and its disturbance by Lithium.— J. Exper. Zool.,121, 1–78

    Article  Google Scholar 

  • RICHTER, G. & THORSON, G. (1975): Pelagische Prosobranchier-Larven des Golfes von Neapel.— Ophelia13, 109–185, 20 Taf., Oslo

    Google Scholar 

  • RISTEDT, H. (1971): Zum Bau der Orthoceriden Cephalopoden.—Palaeontographica, A137, 155–195, Taf., 28–42, 7 Abb., Stuttgart

    Google Scholar 

  • ROBERT, A. (1902): Recherches sur le développement des Troques.—Arch. Zool. Exp. Gén. 3 ser.,10, 269–538

    Google Scholar 

  • ROBERTSON, R. (1971): Scanning electron microscopy of planktonic larval marine Gastropod shells.—The Veliger,14, 1–12, 34 Abb., Berkeley

    Google Scholar 

  • ROLLINS, H. & BATTEN, R. (1968): A sinus-bearing monoplacophoran and its role in the classification of primitive molluscs.—Palaeontology,11, 132–140, London

    Google Scholar 

  • RUNNEGAR, B. & JELL, P. (1976): Australian Middle Cambrian molluscs and their bearing on early molluscan evolution.—Alcheringa1, 109–138, 11 Abb., Northfield

    Article  Google Scholar 

  • RUNNEGAR, B. & POJETA, J. (1974): Molluscan phylogeny: the paleontological viewpoint.— Science,186, 311–317, 5 Abb., New York

    Article  Google Scholar 

  • RUNNEGAR, B. (1976): Origin and evolution of the class Rostroconchia.—Phil. Trans. Roy. Soc. London B284, 319–330, 12 Abb., Cambridge

    Google Scholar 

  • SALVINI-PLAWEN, L. v. (1968): Beiträge zur Systematik der niederen Mollusken.—Marine Biological Association of India, Proc. Symp. 3/Mol. (1), 248–256, Calcutta

    Google Scholar 

  • — (1969): Solenogastres und Caudofoveata (Mollusca, Aculifera): Organisation und phylogenetische Bedeutung.—Malacologia,9, 191–216, 15 Abb., Ann Arbor

    Google Scholar 

  • — (1980a): A reconsideration of systematics in the Mollusca (phylogeny, and higher classification).—Malacologia 19, 249–278, 5 Abb., 4 Tab., Ann Arbor

    Google Scholar 

  • — (1980b): Was ist eine Trochophora? Eine Analyse der Larventypen mariner Protostomier. —Zool. Jb. Anat.,103, 389–423, 15 Abb., Jena

    Google Scholar 

  • — (1980c): Phylogenetischer Status und die Bedeutung der Mesenchymaten Bilateria.— Zool. Jb. Anat.,103, 354–373, 6 Abb., Jena

    Google Scholar 

  • SANDBERGER, G.F. (1850–1856): Die Versteinerungen, des Rheinischen Schichtensystems in Nassau.—1–564, Wiesbaden

  • SASTRY, A.N. (1979): Pelecypoda (excluding Ostreidae).—In: GIESE, A.C. & PEARSE, J.S. (Eds.): Reproduction of marine invertebrates,5, 113–292

  • SCARLATO, O.A. & STAROBOGATOV, Y.I. (1978): Phylogenetic relations and the early evolution of the class Bivalvia.—Phil. Trans. Roy Soc. London, B,284, 217–224, 2 Abb., Cambridge

    Google Scholar 

  • SCHÄFER, w. (1955): Über die Bildung der Laichballen der Wellhorn-Schnecken.—Natur und Volk,85, 92–97, 6 Abb., Frankfurt

    Google Scholar 

  • SCHELTEMA, R.S. (1971): Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods.—Biol. Bull.,140, 284–322, Abb. 12, 6 Tab.

    Google Scholar 

  • — (1971): The dispersal of the larvae of shoal-water benthic invertebrate species overlong distance by ocean currents.—Fourth European Biol. Symp., z-28, 7 Abb., Cambridge (Univ. Press)

    Google Scholar 

  • SCHINDEWOLF, O.H. (1928): Zur Terminologie der Lobenlinie.—Paläont. Z.,9, 181–186, Stuttgart

    Google Scholar 

  • SCHRÖDER, O. (1907): Beiträge zur Histologie des Mantels vonCalyculina (Cyclas) lacustris Müller.—Zool. Anz.,31, 506–510, 2 Abb., Leipzig

    Google Scholar 

  • SMITH, F.G. (1935): The development ofPatella vulgata.—Phil. Trans. Roy. Soc. Lond., B.,225, 95–125, Cambridge

    Google Scholar 

  • SATH, L.F. (1933): The evolution of the Cephalopoda.—Biol. Rev. Cambridge Philos. Soc.,8, 418–462, Cambridge

    Article  Google Scholar 

  • SPIESS, P.E. (1971): Organogenese des Schalendrüsenkomplexes bei einigen coleoiden Cephalopoden des Mittelmeeres.—Rev. Suisse Zool.,79, 167–226, 10 Taf., 15 Abb., 8 Taf., Genf

    Google Scholar 

  • STASEK, C.R. (1972): The molluscan framework.—In: FLORKIN, M. & SCHEER, B.T. (Eds.): Chemical Zoology,7, Acad. Press, N.Y.

    Google Scholar 

  • STASEK, C.R. & McWWILLIAMS, W.R. (1973): The comparative morphology and evolution of the molluscan mantle edge.—The Veliger,16, 1–19, Berkeley

    Google Scholar 

  • STENZEL, H.B. (1964): LivingNautilus. Treatise on Invertebrate Paleontology, K. Mollusca 3, K59-K93, Lawrence

    Google Scholar 

  • STRATHMANN, R.R. (1978): The evolution and loss of feeding larval stages of marine invertebrates. —Evolution,32, 894–906, 2 Abb., Lawrence

    Article  Google Scholar 

  • SWEET, W.C. (1959): Muscle-attachment impressions in some Paleozoic nautiloid cephalopods.— J. Paleont.,33, 293–304, Tulsa

    Google Scholar 

  • — (1964): Nautiloidea-Orthocerida.—Treatise on Invertebrate Paleontology, K, Mollusca 3, K216-K260, Lawrence

    Google Scholar 

  • TANABE, K., FUKUDA, Y. & OBATA, I. (1980): Ontogenetic development and functional morphology in the early growth-stages of three Cretaceous ammonits.—Bull. Nat. Sci. Mus. Ser. C,6, 9–26, 5 Taf., Tokyo

    Google Scholar 

  • TANABE, K., OBATA, I., FUKUDA, Y. & FUTAKAMI, M. (1979): Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy.—Bull. Nat. Sci. Mus., Ser. C,5, 153–176, 6 Taf., Tokyo

    Google Scholar 

  • TAYLOR, D.W. & SOHL, N.F. (1962): An outline of gastropod classification.—Malacologia,1, 7–32, Ann Arbor

    Google Scholar 

  • TEICHERT, C. (1967): Major features of cephalopod evolution,—In: TEICHERT, C. & YOCHELSON, E.L. (Eds.): Essays in Paleontology and Stratigraphy, 162–210, Kansas Univ. Dept. Geol. Spec. Publ.,2, 20 Abb., 1 Tab., Lawrence

  • THIELE, J. (1929–1935): Handbuch der systematischen Weichtierkunde, 2 Bänder, Jena, (Fischer)

    Google Scholar 

  • THOMPSON, T.E. (1967): Adaptive significance of gastropod torsion.—Malacologia,5, 423–430, 3 Abb., Ann Arbor

    Google Scholar 

  • THORSON, G. (1935): Studies on the egg capsules and development of Arctic marine prosobranchs. —Medd. Groenl.,100, 1–71, Kopenhagen

    Google Scholar 

  • — (1946): Reproduction and larval development of Danisch marine bottom invertebrates.— Meddel. Komm. Havundersoeg., Ser. Plankton,4, 1–523, Kopenhagen

    Google Scholar 

  • — (1967):Clanculus bertheloti D'Orbigny, 1839: Eine brutpflegende prosobranchiate Schnecke aus der Brandungszone von Teneriffa.—Z. Morph. ökol. Tiere,60, 162–175, 10 Abb., Berlin

    Article  Google Scholar 

  • TIMMERMANS, L.P.M.: (1969): Studies on shell formation in molluscs.—Netherl. J. Zool.,19, 417–523, 14 Taf., 6 Abb., Leiden

    Google Scholar 

  • TROSCHEL, F.H. (1856–1893): Das Gebiss der Schnecken, zur Begündung einer natürlichen Classification,1, 1–252,2, 1–409, Berlin

    Google Scholar 

  • UNDERWOOD, A. (1972): Spawning, larval development and settlement behavior ofGibbula cineraria (Gastropoda: Prosobranchia), with a reappraisal of torsion in gastropods.— Marine Biol.,17, 341–349

    Article  Google Scholar 

  • VOGEL, K. & GUTMANN, W.F. (1980): The derivation of pelecypods: role of biomechanics, physiology and environment.—Lethaia,13, 269–275, 2 Abb., Olso

    Google Scholar 

  • WALLER, T.R. (1980): Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia).—Smithsonian Contr. Zool.,313, 1–58, 1 Taf., 46 Abb., Washington

    Google Scholar 

  • WALLER, T.R. (1981): Functional morphology and development of veliger larvae of the European oyster,Ostrea edulis Linné.—Smithsonian Contr. Zool.,328, 1–70, 152 Abb., Washington

    Google Scholar 

  • WARD, J. (1966): The breeding cycle of the keyhole limpet,Fissurella barbadensis.—Bull. Mar. Sci.,16, 685–695, Miami

    Google Scholar 

  • WEBBER, H.H. (1979): Gastropoda: Prosobranchia.—In: GIESE, A.C. & PEARSE, J.S. (Eds.): Reproduction of marine invertebrates,5.

  • WENZ, W. (1938–1944): Gastropoda, Teil 1, Allgemeiner Teil und Prosobranchia.—In: SCHINDEWOLF, O.H. (Ed.): Handbuch der Paläontologie,6, 1639 S., Berlin (Borntraeger)

    Google Scholar 

  • WIERZEJSKI, A. (1905): Embryologie vonPhysa fontinalis L..—Z. wiss. Zool.,83, 502–706, Taf. 18–27, 8 Abb., Leipzig

    Google Scholar 

  • YOCHELSON, E.L. (1971):Nevadaspira, a new Devonian septate gastropod.—In: DUTRO, J.T. (Ed.): Paleozoic Perspectives: a Paleontologic Tribute to G. Arthur Cooper. Smithsonian Contr. Paleont.,3, 233–241, London

  • — (1978): An alternative approach to the interpretation of the phylogeny of ancient mollusks.—Malacologia,17, 165–191, 1 Abb., Ann Arbor

    Google Scholar 

  • YOCHELSON, E.L., FLOWER, R.H. & WEBERS, G.F. (1973): The bearing of the new Late Cambrian genusKnightoconus Mollusca: Monoplacophora) upon the origin of the Cephalopoda.— Lethaia,6, 275–310, 10 Abb., Oslo

    Google Scholar 

  • YONGE, C.M. (1960): General characters of Mollusca.—Treatise on Invertebrate Paleontology, I, Mollusca 1, 13–136, Lawrence

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandel, K. Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7, 1–197 (1982). https://doi.org/10.1007/BF02537225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537225

Schlüsselwörter

Navigation