Skip to main content

Abstract

Plant propagation in vitro is currently an advanced biotechnological method to produce identical pathogen-free plants for agriculture and forestry. The method is still costly, and handicapped because intensive hand manipulation of the cultures is required, plant establishment is slow, and survival ex vitro is often low. Efficient commercial micropropagation depends on high proliferation rates during the multiplication stage, successful preparation of the plantlets during the acclimatization (hardening) stage and a high rate of plant survival, which must be coupled, to some degree, with automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken-Christie, J. and Jones, C. (1987) Towards automation: radiata pine and shoot hedges in vitro. Plant Cell Tissue Organ Culture 8: 185–196.

    Article  Google Scholar 

  • Aitken-Christie, J., Davies, H.E., Holland, L., Kubota, C. and Fujiwara, K. (1992) Effect of nutrient media composition on sugar-free growth and chlorophyll fluorescence of Pinus radiata L shoot in vitro. Acta Hort 319: 125–130.

    Google Scholar 

  • Alchanatis, V., Peleg, K. and Ziv, M. (1994) Morphological control and mensuration of potato plantlets from tissue culture. Plant Cell Tissue Organ Culture 36: 331–338.

    Article  Google Scholar 

  • Ariel, T. (1987) The effect of culture condition on development and acclimatization of Philodendron burgundy and Dianthus caryophyllus, M.Sc. Thesis submitted to the Hebrew University of Jerusalem, 97 pp.

    Google Scholar 

  • Blanke, M.M. and Belcher, A.R. (1989) Stomata of apple leaves cultured in vitro. Plant Cell Tissue Organ Cult. 19: 85–89.

    Article  Google Scholar 

  • Blazkova, A., Ullmann, J., Josefusova, Z., Machackova, I. and Krekule, J. (1989) The influence of gaseous phase on growth of plants in vitro — The effect of different types of stoppers. Acta Hort. 251: 209–214.

    Google Scholar 

  • Brainerd, K.E. and Fuchigami, L.H. (1981) Acclimatization of aseptically cultured apple plants to low relative humidity, J. Amer. Soc. Hort. Sci. 106: 515–518.

    Google Scholar 

  • Brainerd, K.E. and Fuchigami, L.H. (1982) Stomatal functioning of in vitro and greenhouse apple leaves in darkness, mannitol, ABA, CO2. J. Expt. Bot. 33: 388–392.

    Article  CAS  Google Scholar 

  • Brainerd, K.E., Fuchigami, L.H., Kwiatkowski, S. and Clark, C.S. (1981) Leaf anatomy and water stress of aseptically cultured “Pixy” plum grown under different environments. HortScience 16: 173–175.

    Google Scholar 

  • Cappelades, M., Fontarnau, R., Carulla, C. and Debergh, P. (1990) Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora. J. Amer. Soc. Hort. Sci. 115: 141–145.

    Google Scholar 

  • Cappelades, M., Lemeur, R. and Debergh, P. (1991) Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tissue Organ Cult. 25: 21–26.

    Article  Google Scholar 

  • Cournac, L., Dimon, B., Carrier, P., Lohou, A. and Chagvardieff, P. (1991) Growth and photosynthetic characteristics of Solanum tuberosum plantlets cultured in vitro in different conditions of aeration, sucrose supply and CO2 enrichment. Plant Physiol. 97: 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Davies, H.E., Hobbs, J., Kroese, H., Fiedler, J. and Aitken-Christie, J. (1992) Measurement of CO2 in tissue culture vessels for sugar-free micropropagation and climate change studies. Acta Hort. 319: 279–284.

    Google Scholar 

  • Debergh, P.C., Harbaoui, Y. and Lemeur, R. (1981) Mass propagation of globe artichoke (Cyanara scolymus): Evaluation of different hypotheses to overcome hyperhydricity with special reference to water potential. Physiol. Plant 53: 181–187.

    Article  Google Scholar 

  • Debergh, P.C. (1987) Improving micropropagation. IAPTC Newsletter 51: 2–10.

    Google Scholar 

  • Debergh, P.C. (1991) Acclimatization technique of plants from in vitro. Acta Hort. 289: 291–300.

    Google Scholar 

  • Debergh, P.C., Aitken-Christie, J., Cohen, D., Grout, B., Von Arnold, S., Zimmerman, R. and Ziv, M. (1992) Reconsideration of the term “vitrification” as used in micropropagation. Plant Cell Tissue Organ Cult. 30: 135–140.

    Article  Google Scholar 

  • De Riek, J., Van Cleemput, O. and Debergh, P.C. (1991) Carbon metabolism of micropropagated Rosa multiflora L. In Vitro Cell Devel. Biol. 27P: 57–63.

    Google Scholar 

  • Desjardins, Y., Hdider, C. and De Riek, J. (1994) Carbon nutrition in vitro. In: J. Aitken-Christie, T. Kozai and M.A.L. Smith (eds.), Automation and Environmental Control in Plant Tissue Culture (this volume), Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Desjardins, Y., Gosselin, A. and Yelle, S. (1987) Acclimatization of strawberry plantlets in CO,-enriched environment and supplementary lighting. J. Amer. Soc. Hort. Sci. 112: 846–851.

    Google Scholar 

  • Desjardines, Y., Gosselin, A. and Lamarre, M. (1990) Growth of transplants and in vitro-cultured clones of asparagus in response to CO, enrichment and supplemental lighting. J. Amer. Soc. Hort. Sci. 115: 364–268.

    Google Scholar 

  • Dillen, W. and Buysens, S. (1989) A simple technique to overcome vitrification in Gypsophila paniculata L. Plant Cell Tissue Organ Cult. 19: 181–188.

    Article  Google Scholar 

  • Doi, M., Hamatami, S., Hirata, T., Imanishi, H. and Hisamoto, T. (1992) Micropropagation system of freesia. Acta Hort. 319: 249–255.

    Google Scholar 

  • Donnelly, D.J. and Vidaver, W.E. (1984a) Leaf anatomy of red raspberry transferred from culture to soil. J. Amer. Soc. Hort. Sci. 109: 172–176.

    Google Scholar 

  • Donnelly, D.J. and Vidaver, W.E. (1984b) Pigment content and gas exchange of red raspberry in vitro and ex vitro. J. Amer. Soc. Hort. Sci. 109: 177–181.

    CAS  Google Scholar 

  • Donnelly, D.J., Vidaver, W.E. and Colbow, K. (1984) Fixation of CO, in tissue cultured red raspberry prior to and after transfer to soil. Plant Cell Tissue Organ Cult. 3: 313–317.

    Article  Google Scholar 

  • Donnelly, D.J., Vidaver, W.E. and Lee, K.Y. (1985) The anatomy of tissue cultured red raspberry prior to and after transfer to soil. Plant Cell Tissue Organ Cult. 4: 43–50.

    Article  Google Scholar 

  • Dubé, S.L. and Vidaver, W. (1992) Photosynthetic competence of plantlets grown in vitro. Description of an automated system for regulating in vitro photosynthetic development. Physiol. Plant 84: 409–416.

    Article  Google Scholar 

  • Fabbri, A., Sutter, E. and Dunston, S.K. (1986) Anatomical changes in persistent leaves of tissue cultured strawberry plants after removal from culture. Scientia Hort. 28: 331–337.

    Article  Google Scholar 

  • Fuchigami, L.H., Cheng, T.Y. and Soeldner, A. (1981) Abaxial transpiration and water loss in aseptically cultured plums. J. Amer. Soc. Hort. Sci. 106: 519–522.

    Google Scholar 

  • Fujiwara, K., Aitken-Christie, J. and Kozai, T. (1993) Water potential of radiata pine shoots cultured in vitro under different relative humidities. Plant Tissue Culture Letters 10: 144–150.

    Article  Google Scholar 

  • Fujiwara, K., Kozai, T. and Watanabe, I. (1987) Fundamental studies on environment in plant tissue culture vessels. J. Agric. Meteorol. 43: 21–30.

    Article  Google Scholar 

  • Fujiwara, L., Kozai, T. and Watanabe, I. (1988) Development of a photoautotrophic tissue culture system for shoot and/or plantlets at rooting and acclimatization stages. Acta Hort. 230: 153–158.

    Google Scholar 

  • Gaspar, T., Kevers, C., Debergh, P., Maene, L., Paques, M. and Boxus, P. (1987) Vitrification: Morphological, physiological and ecological aspects. In: J.M. Bonga and D.J. Durzan (eds.), Cell and Tissue Culture in Forestry. Volume I, pp. 152–166. Martinus Nijhoff Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Grout, B. W. W. (1975) Wax development on leaf surface of Brassica oleracea botrytis cv Currawon regenerated from meristem culture. Plant Sci. Lett. 5: 401–405.

    Article  Google Scholar 

  • Grout, B.W.W. and Aston, H. (1977a) Transplanting of cauliflower plants regenerated from meristem culture. I. Water loss and water transfer related to changes in leaf wax and to xylem regeneration. Hort. Res. 17: 1–7.

    Google Scholar 

  • Grout, B.W.W. and Aston, H. (1977b) Transplanting of cauliflower plants regenerated from meristem culture. II. Carbon dioxide fixation and the development of photosynthetic ability. Hort. Res. 17: 65–71.

    Google Scholar 

  • Grout, B.W.W. and Aston, H. (1978) Modified leaf anatomy of cauliflower plantlets regenerated from meristem culture. Ann. Bot. 42: 993–995.

    Google Scholar 

  • Grout, B.W.W. and Millan, S. (1985) Photosynthetic development of micropropagated strawberry plantlets following transplanting. Ann. Bot. 55: 129–131.

    Google Scholar 

  • Grout, B.W.W. and Donkin, M.E. (1987) Photosynthetic activity of cauliflower meristem culture in vitro and at transplanting into soil. Acta Hort. 212: 323–327.

    Google Scholar 

  • Grout, B.W.W. and Price, F. (1987) The establishment of photosynthesis independence in strawberry cultures prior to transplanting In: G. Ducote, M. Jacob and A. Simpson (eds.), Plant Micropropagation in Horticultural Industries, pp. 55–60. Arlon, Belgium.

    Google Scholar 

  • Hakkaart, F.A. and Versluijs, J.A. (1983) Some factors affecting glassiness in carnation meristem tip cultures. Neth. J. Plant Path. 89: 47–53.

    Article  Google Scholar 

  • Hale, S.A., Young, R.E., Adelberg, J.W., Keese, R.J. and Camper, N.D. (1992) Bioreactor development for continual-flow, liquid plant tissue culture. Acta Hort. 319: 107–112.

    Google Scholar 

  • Hayashi, M., Nakayama, T. and Kozai, T. (1988) An application of the acclimatization unit for growth of carnation explants, and for rooting and acclimatization of the plantlets. Acta Hort. 230: 189–194.

    Google Scholar 

  • Hayashi, M., Fujita, N., Kitaya, Y. and Kozai, T. (1992) Effect of sideward lighting on the growth of potato plantlets in vitro. Acta Hort. 319: 163–166.

    Google Scholar 

  • Ibaraki, Y., Iida, Y. and Kurata, K. (1992) Effects of air currents on gas exchange of culture vessels. Acta Hort. 319: 221–224.

    Google Scholar 

  • Jackson, M.B., Abbot, A.J., Belcher, A.R., Hall, K.C., Butler, R. and Cameron, J. (1991) Ventilation in plant tissue culture and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 67: 229–237.

    CAS  Google Scholar 

  • Kevers, C., Prat, R. and Gaspar, Th. (1987) Vitrification of carnation in vitro: changes in cell wall mechanical properties, cellulose and lignin content. Plant Growth Regulation 5: 59–66.

    Article  CAS  Google Scholar 

  • Kozai, T. (1991a) Photoautotrophic micropropagation. In Vitro Cell. Dev. Biol. 27P: 47–51.

    Google Scholar 

  • Kozai, T. (1991b) Controlled environment in conventional and automated micropropagation. In: I.K. Vasil (ed.), Cell Culture and Somatic Cell Genetics of Plants, pp. 213–230. Academic Press, Inc., New York.

    Google Scholar 

  • Kozai, T. (1991c) Autotrophic micropropagation. In: Y.P.S. Bajaj (ed.), Biotechnology in Agriculture and Forestry, Volume 17, High-Tech and Micropropagation I, pp. 313–343. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Kozai, T. (1991d) Acclimation of micropropagated plantlets. In: Y.P.S. Bajaj (ed.), Biotechnology in Agriculture and Forestry, Volume 17, High-Tech and Micropropagation I, pp. 127–139. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Kozai, T. (1991e) Micropropagation under photoautotrophic conditions. In: P.C. Debergh and R.H. Zimmerman (eds.), Micropropagation: Technology and Application, pp. 447–460. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Kozai, T. and Iwanami, Y. (1988) Effect of CO, enrichments and sucrose concentration under high photosynthetic photon flux on tissue-cultured plantlet of carnation (Dianthus caryophyllus) during the preparation stage. J. Jap. Soc. Hort. Sci. 57: 279–288.

    Article  Google Scholar 

  • Kozai, T., Koyama, Y. and Watanabe, I. (1988a) Multiplication of potato plantlets in vitro with sugar-free medium under high photosynthetic photon flux. Acta Hort. 230: 121–125.

    Google Scholar 

  • Kozai, T., Kutoba, C. and Watanabe, I. (1988b) Effects of basal medium composition on the growth of carnation plantlets in auto- and mixo-trophic tissue culture. Acta Hort. 230: 159–164.

    Google Scholar 

  • Kozai, T. and Sekimoto, K. (1988) Effect of the number of air changes per hour of the closed vessel and the photosynthetic photon flux on the carbon dioxide concentration inside the vessel and the growth of strawberry plantlets in vitro. Environ. Control Biol. (Tokyo) 26: 21–29 (in Japanese).

    Article  CAS  Google Scholar 

  • Kozai, T., Oki, H. and Fujiwara, K. (1990) Photosynthetic characteristics of Cymbidium plantlets in vitro. Plant Cell Tissue Organ Cult. 22: 205–211.

    Article  Google Scholar 

  • Kozai, T., Iwabuchi, K. and Watanabe, I. (1991) Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tissue Organ Cult. 25: 107–115.

    Google Scholar 

  • Kozai, T., Fujiwara, K., Hayashi, M. and Aitken-Christie, J. (1992a) The in vitro environment and its control in micropropagation. In: K. Kurata and T. Kozai (eds.), Transplant Production Systems, pp. 247–282. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Kozai, T., Kino, S., Jeong, B.R., Hayashi, M., Kinowaki, M., Ochiai, T. and Mori, K. (1992b) A sideward lighting system using diffusive optical fibers for production of vigorous micropropagated plantlets. Acta Hort. 319: 237–242.

    Google Scholar 

  • Kreutmeier, C., Gebhardt, K., Paul, L. and Feucht, W. (1984) The effect of MgSO4 and CaC12 on regeneration of shoot tip cultures of Prunus cerasus in vitro. Gartenbauwissenshaft 49: 204–212.

    CAS  Google Scholar 

  • Kubota, C. and Kozai, T. (1992) Application of high forced/natural ventilation for photoautotrophic micropropagation of potato (Solanurm tuberosum L.). HortScience 27: 1312–1314.

    Google Scholar 

  • Kurata, K. and Kozai, T. (1992) Transplant Production Systems. Kluwer Academic Publishers, Dordrecht, 327 pp.

    Book  Google Scholar 

  • Kunneman, B.P.A.M. and Albers, M.R.J. (1992) Effect of tissue culture and acclimation conditions on the survival and growth of rooted and unrooted Malus and Pyrus microcuttings. Acta Hort. 314: 147–163.

    Google Scholar 

  • Laforge, F., Desjardines, Y., Graham, M.E.D. and Gosselin, A. (1990) Miniature growth chambers for the study of environmental conditions in vitro. Can. J. Plant Sci. 70: 825–836.

    Article  Google Scholar 

  • Lee, N., Wetzstein, H.Y. and Sommer, H.E. (1985) Effect of quantum flux density on photosynthesis and chloroplast ultrastructure in tissue-cultured plantlets and seedlings of Liquidambar styraciflua L towards improved acclimatization and field survival. Plant Physiol. 78: 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Lilien-Kipnis, H. and Kochba, M. (1987) Mass propagation of new Gladiolus hybrids. Acta Hort. 212: 631–638.

    Google Scholar 

  • Lilien-Kipnis, H., Ziv, M., Kahani, S. and Azizbekova, N. (1992) Proliferation and regeneration of Nerine in liquid culture. Acta Hort. 314: 121–129.

    Google Scholar 

  • Maene, L. and Debergh, P. (1985) Liquid medium additions to established tissue cultures to improve elongation and rooting in vivo. Plant Cell Tissue Organ Cult. 5: 23–34.

    Article  CAS  Google Scholar 

  • Maene, L. and Debergh, P. (1987) Optimalisation of the transfer of tissue cultured shoots to in vivo condition. Acta Hort. 212: 335–348.

    Google Scholar 

  • Majada, J.P., Tames, R.S., Fal, M.A., Ibarra, R. and Mateos, F. (1992) Automatic control of physical parameters in “in vitro” liquid culture. Acta Hort. 319: 107–112.

    Google Scholar 

  • Marin, J.A., Gella, R. and Herrero, M. (1988) Stomatal structure and functioning as a response to environmental changes in acclimatized micropropagated Prunus cerasus L. Ann. Bot. 62: 663–670.

    Google Scholar 

  • McClelland, M.T., Smith, M.A.L. and Carothers, Z. (1990) The effect of in vitro and ex vitro root initiation on subsequent microcutting root quality. Plant Cell Tissue Organ Cult. 23: 11–123.

    Article  Google Scholar 

  • McCown, B.H. and Joyce, P.J. (1991) Automated propagation of microtubers of potato. In: I.K. Vasil (ed.), Cell Culture and Somatic Cell Genetics. Volume 8, pp. 95–108. Academic Press, New York.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962) Revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 15: 473–479.

    Article  CAS  Google Scholar 

  • Nakayama, M., Kozai, T. and Watanabe, K. (1991) Effect of the presence/absence of sugar in the medium and natural/forced ventilation on the net photosynthetic rates of potato explant in vitro. Plant Tissue Cult. Lett. 8: 105–109.

    Article  CAS  Google Scholar 

  • Novello, V., Gribudo, I. and Roberts, A.V. (1992) Effects of paclobutrazol and reduced humidity on stomatal conductance of micropropagated grapevines. Acta Hort. 319: 65–70.

    Google Scholar 

  • Paques, M. and Boxus, P. (1987) Vitrification: a phenomenon related to tissue water content. Acta Hort. 212: 245–252.

    Google Scholar 

  • Plessner, O., Ziv, M. and Negbi, M. (1990) In vitro corm production in the saffron (Crocus sativus L.). Plant Cell Tissue Organ Cult. 20: 89–94.

    Article  Google Scholar 

  • Preece, J.E. and Sutter, E. (1991) Acclimatization of micropropagated plants to the greenhouse and field. In: P.C. Debergh and R.H. Zimmermann (eds.), Micropropagation: Technology and Application, pp. 71–91. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Pospišilova, J., Solárova, J. and Catský, J. (1992) Photosynthetic responses to stress during in vitro cultivation. Photosynthetica 26: 3–18.

    Google Scholar 

  • Reuther, G. (1988) Comparative anatomical and physiological studies with ornamental plants under in vitro and greenhouse conditions. Acta Hort. 226: 91–98.

    Google Scholar 

  • Reuther, G., Botsch, K. and Meier, K. (1992) Influence of nutritional and environmental factors on productivity and photoautotrophy of transplants in vitro. Acta Hort. 319: 47–52.

    Google Scholar 

  • Ripley, K.P. and Preece, J.E. (1986) Micropropagation of Euphorbia lathyris L. Plant Cell Tissue Organ Cult. 5: 213–218.

    Article  CAS  Google Scholar 

  • Roberts, A.V., Walker, S., Horan, I., Smith, E.F. and Mottley, J. (1992) The effect of growth retardants, humidity and lighting at Stage III on Stage IV of micropropagation in chrysanthemum and rose. Acta Hort. 319: 153–158.

    Google Scholar 

  • Rogers, R.B. and Smith, M.A.L. (1992) Consequences of in vitro and ex vitro root initiation for miniature rose production. Journal of Horticultural Science 67: 535–540.

    Google Scholar 

  • Santamaria, J.M., Dan, W.J. and Atkinson, C.J. (1993) Stomata of micropropagated Delphinium plants respond to ABA, CO2, light and water potential but fail to close fully. J. Exp. Bot. 44: 99–107.

    Article  CAS  Google Scholar 

  • Shackel, K.A., Novello, V. and Sutter, E.G. (1990) Stomatal function and cuticular conductance in whole tissue cultured apple plants. J. Amer. Soc. Hort. Sci. 115: 468–472.

    Google Scholar 

  • Shimada, N., Tanaka, F. and Kozai, T. (1988) Effects of low O, concentration on net photosynthesis of C3 plantlets in vitro. Acta Hort. 230: 171–175.

    Google Scholar 

  • Short, K.C., Warburton, J. and Roberts, A.V. (1987) In vitro hardening of cultured cauliflower and chrysanthemum plantlets to humidity. Acta Hort. 212: 329–334.

    Google Scholar 

  • Smith, E.F., Roberts, A.V. and Mottley, J. (1990a) The preparation in vitro of chrysanthemum for transplantation to soil. 1. Protection of roots by cellulose plugs. Plant Cell Tissue Organ Cult. 21: 129–132.

    Article  Google Scholar 

  • Smith, E.F., Roberts, A.V. and Mottley, J. (1990b) The preparation in vitro of chrysanthemum for transplantation to soil. 2. Improved resistance to desiccation conferred by paclobutrazol. Plant Cell Tissue Organ Cult. 21: 133–140.

    Article  CAS  Google Scholar 

  • Smith, M.A. L. and McClelland, M.T. (1991) Gauging the quality and performance of woody plants produced in vitro. In Vitro Cell. Devel. Biol. 27P: 52–56.

    Google Scholar 

  • Smith, M.A.L., Eichorst, S.M. and Rogers, R.B. (1992) Rhizo nenesis pretreatments and effects on microcuttings during transition. Acta Hort. 319: 77–82.

    Google Scholar 

  • Smith, M.A.L., McClelland, M.T. and Timmerman, R. (1991) Anomalous root structure on woody plants in vitro. J. Environ. Hort. 9: 61–64.

    Google Scholar 

  • Smith, M.A.L. and McCown, B.H. (1983) A comparison of source tissue for protoplast isolation from three woody plant species. Plant Science Letters 28: 149–151.

    Article  Google Scholar 

  • Solàrova, J. (1989) Photosynthesis of plant regenerants. Diurnal variance in CO, concentration in cultivation vessels resulting from plantlets photosynthetic activity. Photosynthetica 23: 100–107.

    Google Scholar 

  • Steinitz, B. and Lilien-Kipnis, H. (1989) Control of precocious Gladiolus corm and cormel formation in tissue culture. J. Plant Physiol. 135: 495–500.

    Article  CAS  Google Scholar 

  • Sutter, E.G. (1984) Chemical composition of epicuticular wax in cabbage plants grown in vitro. Can. J. Bot. 62: 74–77.

    Article  CAS  Google Scholar 

  • Sutter, E.G. (1985) Morphological, physical and chemical characteristics of epicuticular wax on ornamental plants regenerated in vitro. Ann. Bot. 55: 321–329.

    Google Scholar 

  • Sutter, E. (1988) Stomatal and cuticular water loss from apple, cherry, and sweetgum plants after removal from in vitro culture. J. Amer. Soc. Hort. 113: 234–238.

    Google Scholar 

  • Sutter, E.G. and Langhans, R.W. (1979) Epicuticular wax formation on carnation plantlets regenerated from shoot tip culture. J. Amer. Soc. Hort. Sci. 104: 493–496.

    Google Scholar 

  • Sutter, E.G. and Langhans, R.W. (1982) Formation of epicuticular wax and its effect on water loss in cabbage plants regenerated from shoot-tip culture. Can. J. Bot. 60: 2896–2902.

    Article  Google Scholar 

  • Sutter, E.G., Shackel, K. and Diaz, J.C. (1992) Acclimatization of tissue cultured plants. Acta Hort. 314: 115–119.

    Google Scholar 

  • Takahashi, S., Katoh, A. and Morimoto, T. (1992) Micropropagation of virus free bulblets of Lilium longiflorum by tank culture 2. Cultivation characteristic of propagated bulblet. Acta Hort. 319: 89–94.

    Google Scholar 

  • Takayama, S., Swedlind, B. and Miwa, Y. (1990) Automated propagation of microbulbs of lilies. In: I.K. Vasil (ed.), Scale-Up and Automation in Plant Propagation Cell Culture and Somatic Cell Genetics of Plants, Volume 8, pp. 112–131. Academic Press, New York.

    Google Scholar 

  • Tanaka, K., Fujiwara, K. and Kozai, T. (1992) Effect of relative humidity in the culture vessel on the transpiration and net photosynthesis rates of potato plantlets in vitro. Acta Hort. 319: 59–64.

    Google Scholar 

  • Tanaka, M., Nagae, S., Fukai, S. and Goi, M. (1992a) Growth of tissue cultured Spathiphyllum on rockwool in a novel film culture vessel under high CO2. Acta Hort. 314: 139–140.

    Google Scholar 

  • Tanaka, M., Ikeda, M., Fukai, S. and Goi, M. (1992b) Effect of different films used for film culture vessels on plantlet development of Phalaenopsis and Cymbidium. Acta Hort. 319: 225–230.

    Google Scholar 

  • Tani, A., Kiyota, M., Taira, T. and Aiga, I. (1991) Growth and photosynthesis of alfalfa plantlets cultured in vitro under photoautotrophic and photomixtrophic conditions. Environ. Control Biol. 29: 127–132.

    Article  Google Scholar 

  • Tanny, G.B., Watad, A.A., Kockba, M. and Gaba, V. (1993) Synthetic membranes for use in tissue culture. In Vitro Cell. Devel. Biol. 29A: 61A.

    Google Scholar 

  • Tisserat, B. and Vandercook, C.E. (1985) Development of an automated plant culture system. Plant Cell Tissue Organ Cult. 5: 107–117.

    Article  Google Scholar 

  • Tsuji, K., Nagaka, M. and Oda, M. (1992) Promotion of the growth of carrot plantlets in vitro by controlling environmental conditions in culture vessels. Acta Hort. 319: 297–301.

    Google Scholar 

  • Vanderschaeghe, A.M. and Debergh, P.C. (1987) Automation of tissue culture and manipulation in the final stages. Acta Hort. 227: 399–401.

    Google Scholar 

  • Von Arnold, S. and Eriksson, T. (1984) Effect of agar concentration on growth and anatomy of adventitious shoots of Picea abies (L.) Karst. Plant Cell Tissue Organ Cult. 3: 257–264.

    Article  Google Scholar 

  • Wardle, K., Quinian, A. and Simpkins, I. (1979) Abscisic acid and the regulation of water loss in plantlets of Brassica oleraceae L. var. Botrytis regenerated through apical meristem culture. Ann. Bot. 43: 745–752.

    CAS  Google Scholar 

  • Wardle, K. and Short, K.C. (1983) Stomatal responses of in vitro cultured plantlets. I. Responses in epidermal strips of Chrysanthemum to environmental factors and growth regulators. Biochem. Physiol. Pflanzen. 178: 619–624.

    CAS  Google Scholar 

  • Wardle, K., Dobbs, E.B. and Short, K.C. (1983) In vitro acclimatization of aseptically cultured plantlets to humidity. J. Amer. Soc. Hort. Sci. 108: 386–389.

    Google Scholar 

  • Watanabe, K., Watanabe, Y. and Shimada, N. (1990) Effect of sucrose concentration in the medium on growth, apparent photosynthesis and ribulose-1,5-biphosphate carboxylase of Spathiphyllum plantlets in aeration culture. Plant Tissue Culture Lett. 7: 74–79.

    Article  CAS  Google Scholar 

  • Weathers, P.J. and Giles, K.L. (1988) Regeneration of plants using nutrient mist culture. In Vitro Cell. Devel. Biol. 24: 727–732.

    Article  Google Scholar 

  • Welander, M. (1983) In vitro rooting of the apple rootstock M26 in adult and juvenile growth phases and acclimatization of the plantlets. Physiol. Plant 58: 231–238.

    Article  CAS  Google Scholar 

  • Werker, E. and Leshem, B. (1987) Structural changes during vitrification of carnation plantlets. Ann. Bot. 59: 377–385.

    Google Scholar 

  • Wetzstein, H.Y. and Sommer, H.E. (1982) Leaf anatomy of tissue cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Amer. J. Bot. 69: 1579–1586.

    Article  Google Scholar 

  • Wetzstein, H.Y. and Sommer, H.E. (1983) Scanning electron microscopy of in vitro-cultured Liquidambar styraciflua plantlets during acclimatization. J. Amer. Soc. Hort. Sci. 108: 475–480.

    Google Scholar 

  • Wetzstein, H.Y. and Sommer, H.E. (1985) Effects of quantum flux density on photosynthesis and chloroplast ultrastructure in tissue-cultured plantlets and seedlings of Liquidambar styraciflua L. towards improved acclimatization and field survival. Plant Physiol. 78: 637–641.

    Article  PubMed  Google Scholar 

  • Whish, J.P.M., Williams, R.R. and Taji, A.M. (1992) Acclimatization — effects of reduced humidity in vitro. Acta Hort. 319: 231–236.

    Google Scholar 

  • Williams, R.R., Mingall, N.D. and Taji, A.M. (1992) Acclimatization: changes in photosynthetic competence. Acta Hort. 314: 131–132.

    Google Scholar 

  • Woltering, E.J. (1986) Ethylene and carbon dioxide accumulation within various tissue culture systems. Acta Bot. Neerl. 35: 50.

    Google Scholar 

  • Zimmerman, R.H. and Fordham, I. (1985) Simplified method for rooting apple cultivars in vitro. J. Amer. Soc. Hort. 110: 34–38.

    Google Scholar 

  • Ziv, M. (1979) Transplanting Gladiolus plants propagated in vitro. Sci. Hort. 11: 257–260.

    Article  Google Scholar 

  • Ziv, M. (1986) In vitro hardening and acclimatization of tissue culture plants. In: L.A. Withers and P.G. Alderson (eds.), Plant Tissue Culture and its Agricultural Applications, pp. 187–196. Butterworths, London.

    Google Scholar 

  • Ziv, M. (1989) Enhanced shoot and comlet proliferation in liquid cultured gladiolus buds by growth retardants, Plant Cell Tissue Organ Cult. 17: 101–110.

    Article  CAS  Google Scholar 

  • Ziv, M. (1990) The effect of growth retardants on shoot proliferation and morphogenesis in liquid cultured Gladiolus plants. Acta Hort. 280: 207–214.

    Google Scholar 

  • Ziv, M. (1991a) Vitrification: Morphological and physiological disorders of in vitro plants. In: P.C. Debergh and R.H. Zimmerman (eds.), Micropropagation Technology and Application, pp. 45— 69. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ziv, M. (1991b) Morphogenic patterns of plants micropropagated in shaken flasks or large scale bioreactor cultures. Israel. J. Bot. 40: 145–153.

    Google Scholar 

  • Ziv, M. (1991c) Quality of micropropagated plants — Vitrification. In Vitro Cell. Devel. Biol.-Plant 27: 64–69.

    Article  Google Scholar 

  • Ziv, M. (1992a) Morphogenic control of plants micropropagated in bioreactor cultures and its possible impact on acclimatization. Acta Hort. 319: 119–124.

    Google Scholar 

  • Ziv, M. (1992b) Micropropagation of Cucumis. In: Y.P.S. Bajaj (ed.), Biotechnology in Agriculture and Forestry. Volume 19, pp. 72–90. Springer Verlag, Berlin.

    Google Scholar 

  • Ziv, M. (1992c) The use of growth retardants for the regulation and acclimatization of in vitro plants. In: C.M. Karssen, L.C. van Loon and D. Vreugdenhil (eds.), Progress in Plant Growth Regulation, pp. 809–817. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Ziv, M. and Lilien-Kipnis, H. (1990) Gladiolus. In: P.V. Ammirato, D.A. Evans, W.R. Sharp and Y.P.S. Bajaj (eds.), Handbook of Plant Cell Culture. Volume 5, pp. 461–478. McGraw-Hill Company, New York.

    Google Scholar 

  • Ziv, M., Meir, G. and Halevy, A.H. (1981) Hardening carnation plantlets regenerated from shoot tips cultured in vitro. Env. Exp. Bot. 21: 423.

    Google Scholar 

  • Ziv, M., Meir, G. and Halevy, A.H. (1983) Factors influencing the production of hardened glaucous carnation plantlets in vitro. Plant Cell Tissue Organ Cult. 2: 55–60.

    Article  Google Scholar 

  • Ziv, M. and Gadasi, G. (1986) Enhanced embryogenesis and plant regeneration from cucumber (Cucumis sativus L.) callus by activated charcoal in solid/liquid double-layer cultures, Plant Sci. 47: 115–122.

    Article  CAS  Google Scholar 

  • Ziv, M., Schwarts, A. and Fleminger, D. (1987) Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sci. 52: 127–134.

    Article  CAS  Google Scholar 

  • Ziv, M. and Ariel, T. (1991) Bud proliferation and plant regeneration in liquid-cultured Philodendron treated with ancymidol and paclobutrazol. J. Plant Growth Regul. 10: 53–57.

    Article  CAS  Google Scholar 

  • Ziv, M. and Ariel, T. (1992) On the relation between vitrification and stomatal cell wall deformity in carnation leaves in vitro. Acta Hort. 314: 121–129.

    Google Scholar 

  • Ziv, M. and Ariel, T. (1994) Vitrification in relation to stomatal deformation and malfunction in carnation leaves in vitro. In: P.J. Lumsden, J. Nicholas and W.J. Davies (eds.), Physiology, Growth and Development of Micropropagated Plants, pp. 143–154. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Ziv, M., Kahany, S. and Lilien-Kipnis, H (1994) Scaled-up profileration and regeneration of Nerine in liquid cultures. Plant Cell Tissue and Organ Cult (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ziv, M. (1995). In vitro acclimatization. In: Aitken-Christie, J., Kozai, T., Smith, M.A.L. (eds) Automation and environmental control in plant tissue culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8461-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8461-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4405-1

  • Online ISBN: 978-94-015-8461-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics