Skip to main content

The Genus Chenopodium: A Potential Food Source

  • Chapter
  • First Online:
Biotechnology of Neglected and Underutilized Crops

Abstract

The genus Chenopodium comprises important cultivated species such as quinua (Chenopodium quinoa Willd.), Chía roja, Huauzontle (Chenopodium berlandieri subsp. nuttalliae) and Cañahua (Chenopodium pallidicaule). These species had a relevant role in the development of pre-hispanic cultures from Meso and South America as source of food and in the religious context. Due to its high nutritive value (up to 19 % proteins) and to its tolerance to adverse factors such as drought, saline soils and frost, these species are considered as alternative crops for areas with extreme conditions, where also malnutrition prevails. The cytogenetic characterization by karyotyping and determination of DNA content by flow cytometry of seven cultivars of Chenopodium are reported. Chenopodium quinoa cultivar Barandales and C. berlandieri subsp. nuttalliae cultigens Huauzontle, Quelite and Chia roja showed 2n = 4x = 36, x = 9. Statistically insignificant genome size differences for studied varieties ranged from 2.96 pg/2C (1 Cx = 724 Mbp) in C. quinoa to 3.04 pg/2C (1 Cx = 743 Mbp) in Huauzontle. Also, in this chapter the molecular characterization by SSR of 38 accessions of cultigen Huauzontle, the study of the traditional growing system of cultigen Chía roja, the nutritional value of both cultigens and the floral development of quinua and Chía roja are described. Results of a mutation breeding program leading to a reduction in saponin content are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NTS:

Non-transcribed spacers

FISH:

Fluorescent in situ hybridization

CMA:

Chromomicine

ESTs:

Expressed sequence tags

RAPD:

Random amplified polymorphic DNA

SSR:

Simple sequence repeats

SNP:

Single nucleotide polymorphism

AFLP:

Amplified fragment length polymorphism

NOR:

Nucleolus organizing region

References

  • Altieri MA (1999) Applying agro ecology to enhance productivity of peasant farming systems in Latin America. Environ Dev Sustain 1:197–217

    Article  Google Scholar 

  • Basset J, Crompton W (1982) The genus Chenopodium in Canada. Can J Bot 60:602–610

    Google Scholar 

  • Bennett MD, Smith J (1991) Philosophical transactions of the royal society of London B. Ann Bot 334:309–345

    CAS  Google Scholar 

  • Bertero D, Diego M (1996) Changes on apical morphology during floral initiation and reproductive development in quinoa (Chenopodium quinoa hill). Ann Bot 79:317–324

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet Res Crop Evol 53:1309–1320

    Article  Google Scholar 

  • Bonifacio A (1995) Interspecific and intergeneric hybridization in chenopod species. Brigham Young University, Provo

    Google Scholar 

  • Carrillo AO, Engleman EM (1994) Anatomía de la semilla de chenopodium berlandieri ssp. nuttalliae (chenopodiaceae) “Huauzontle”. Bol Soc Bot Méx 54:17–34

    Google Scholar 

  • CIESEM (2001) Municipio en Cifras: secretaria de educación en el estado, centro de información económica y social del estado de Michoacán. Municipio Pátzcuaro. pp 112

    Google Scholar 

  • CIRNMA (2001) Calidad del grano: centro de investigaciones en recursos naturales y medio ambiente. Puno

    Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2004) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168(2):439–447

    Article  Google Scholar 

  • De la Cruz TE, Rubluo IA, Palomino HG, García AJM, Laguna CA (2007) Characterization of chenopodium germplasm, selection of putative mutants and its cytogenetic study. In: Ochatt S, Mohan-Jain S (eds) Breeding of neglected and under-utilized crops, spices and herbs. Science Publishers, Enfield, pp 124–136

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JE (1983) A plant DNA minipreparation: version II. Pl Mol Biol Rep 1(4):19–21

    Article  CAS  Google Scholar 

  • Dhellot JR, Matouba E, Maloumbi MG, Nzikou JM, Dzondo MG, Linder M, Parmentier M, Desobry S (2006) Extraction and nutritional properties of Solanum nigrum L seed oil. Afr J Biotechnol 5(10):987–991

    CAS  Google Scholar 

  • Dolezel J, Lysak MA, Kubalakova M, Simkova H, Macas J (2000) Sorting of plant chromosomes in methods in cell biology: flow cytometry. In: Darzynkiewicz Z (ed) 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128

    Article  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Flow cytometry with plant cells. In: Dolezel J, Greilhuber J, Suda y J (eds) Willey-Vch Verlag. CmbH and Co. KGaA, Weinheim, Federal Republic of Germany. pp 41–65

    Google Scholar 

  • Fairbanks DJ, Burgener KW, Robison LR, Andersen WR, Ballón E (1990) Electrophoretic characterization of quinoa seed proteins. Plant Breed 104:190–195

    Article  CAS  Google Scholar 

  • Fairbanks DJ, Waldrigues DF, Ruas CF, Ruas RM, Maughan PJ, Robison LR, Andersen WR, Riede CR, Panley CS, Caetano LG, Arantes OMN, Fungaro MH, Vidotto MC, Jankevicius SE (1993) Efficient characterization of biological diversity using field DNA extraction and RAPD markers. Brazil J Genet 16:11–33

    Google Scholar 

  • Falcón BT, Vázquez AO, Luna GMA (2007) Acidos grasos en las semillas de Chenopodium berlandieri ssp nuttalliae raza local Huauzontle, Congreso Técnico Científico ININ-SUTIN

    Google Scholar 

  • FAO (Food and Agriculture Organization) (1996) The state of the world’s plant genetic resources: preparatory materials for the 4th international technical conference on plant genetic resources. Leipzig, Germany, p 511

    Google Scholar 

  • FAO (2008) The state of food insecurity in the world. Rome Italy. 56p

    Google Scholar 

  • FAO (1998) Land conservation in Latin America. http://www.fao.org/ag/magazine/spot4.htm. Consulted january, 2013

  • Gandarillas H (1967) Observaciones sobre la biología reproductiva de la quinoa (Chenopodium quinoa Wild.). Saya. Sociedad de Ingenieros Agrónomos de Bolivia. Abril-Noviembre. La Paz Bolivia, pp 4

    Google Scholar 

  • Gandarillas H (1982) Quinoa production. IBTA-CIID (trans: Sierra-Blanca Assoc) Denver, pp 57

    Google Scholar 

  • Gandarillas H, Luizaga J (1967) Número de cromosomas de Chenopodium quinoa Willd. en radículas y raicillas. Turrialba 17:275–279

    Google Scholar 

  • Giusti L (1970) El género Chenopodium en argentina. l. Número de Cromosomas Darwiniana 16:98–105

    Google Scholar 

  • Gómez MME (1989) ¿Qué grado de alogamia tiene la Quinua (Chenopodium quinoa Willd.). Tesis Profesional, Depto. Fitotecnia, Universidad Autónoma Chapingo, México

    Google Scholar 

  • Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Ann Botany 95:255–260.

    Google Scholar 

  • Guzmán ME (2007) Evaluación nutritiva y toxicologica de la inflorescencia del Huauzontle (Chenopodium nuttalliae) cruda y cocida. Tesis profesional. Facultad de Química. UNAM, p 76

    Google Scholar 

  • Heiser CH (1985) Chenopods: from weeds to the halls of Montezuma, Of plants and people. University of Oklahoma Press, Oklahoma, pp 82–99

    Google Scholar 

  • Hernández AM, de la Cruz TE, Rodríguez DR (1994) Evaluación de características agronómicas de quinua (Chenopodium quinoa Willd) generación M4. Memorias del VI Congreso Técnico–Científico ININ–SUTIN, México

    Google Scholar 

  • Heywood V (1999) Trends in agricultural biodiversity. In: Janik J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 2–14

    Google Scholar 

  • Humboldt AL, Bonpland A, Kunth CS (1815) Nova genera et species plantarum, 6e Part. Botanique (2) Paris, p 184

    Google Scholar 

  • Hunziker TA (1952) Los pseudocereales de la agricultura indígena de América. ACME AGENCY Soc. Resp. Ltda, Suipacha

    Google Scholar 

  • INEGI (2000) XII Censo de Población y Vivienda. Instituto Nacional de Estadística Geografía e Informática, México

    Google Scholar 

  • Iturbide GA (1994) Grain amaranths. In: Hernándo BJE, León J (eds) Neglected crops: 1492 from a different perspective. FAO, Rome, pp 93–101

    Google Scholar 

  • Kidwell MG (2002) Transponsable elements and evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetics studies in Chenopodium quinoa and Amaranthus caudatus. Acta Societalis Botanicorum Pol 70:85–90

    Article  CAS  Google Scholar 

  • Leitch AR, Lim KY, Leitch IJ, O′Neill M, Chye M, Low F (1998) Molecular cytogenetics studies in rubber, hevea brasilensis mull arg (Euphorbiaceae). Genome 41:464–467

    CAS  Google Scholar 

  • López MA (2006) Estudio de los recursos genéticos de los pseudocereales Chía roja (Chenopodium berlandieri subsp. Nuttalliae) y Amaranto (Amaranthus spp.) en los Ejidos de Santa María Huiramangaro y Opopeo: michoacán. Universidad Michoacana de San Nicolás de Hidalgo, México, p 154

    Google Scholar 

  • López GA (1988) Potencial genético de la quinua (Chenopodium quinoa Willd) centro de genética, Resúmenes del XII congreso de fitogenética, pp 16–17. UA Ch, Chapingo

    Google Scholar 

  • Mapes SC (1987) El maíz entre los Purhepechas de la cuenca del Lago de Pátzcuaro Michoacán. Méx Am Indígena 27(2):346–373

    Google Scholar 

  • Martínez GNC (2005) Caracterización física y bromatológica de germoplasma de pseudocereales: Chenopodium berlandieri ssp. nuttalliae y Amaranthus spp: Tesis de Licenciatura. Químico en Alimentos. Universidad Autónoma del Estado de México, México, p 78

    Google Scholar 

  • Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the FISH genome. In: Williams CR (ed) Focus on genome research. New Science Publishers, Hauppauge, pp 289–318

    Google Scholar 

  • Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, MacCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd). Crop Sci 45:1618–1630

    Article  CAS  Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason S, Jarvis D, Gardunia B, Fairbanks D (2004) A genetic linkage map of quinoa (Chenopodium quinoa Willd), based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkins SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839

    Article  PubMed  CAS  Google Scholar 

  • Miranda CS, Mujíca SA (1985) Avances en la investigación genética en quinua (Chenopodium quinoa Willd) colegio de postgraduados. Centro de Genética, Chapingo, p 43

    Google Scholar 

  • Moquin-Tandon CHBA (1849) Amarantaceae salsolaceae. In: De Candolle AP (ed) Prodromus systematis naturalis regni vegetabilis, vol 13(2), pp 211–230

    Google Scholar 

  • Mújica SMA (1983) Selecciones de variedades de quinua: colegio de postgraduados, centro de genética. Tesis de Maestría, Portugal 110

    Google Scholar 

  • Mújica SMA, Izquierdo J, Marathee JP, Morón C, Jacobsen S (1999) Reunión Técnica y Taller de Formulación de Proyecto Regional sobre Producción y Nutrición Humana en Base a Cultivos Andinos. Arequipa, Perú

    Google Scholar 

  • Mundial B (2006) La pobreza y creciemiento: circulos virtuosos y circulos viciosos. Washington, p 216

    Google Scholar 

  • Nelson DC (1968) Taxonomy and origins of Chenopodium quinoa and Chenopodium nuttalliae. Ph D thesis, University of Indiana, Bloomington

    Google Scholar 

  • Nieto CC, Vimos NC, Caicedo VC, Monteros JC, Rivera MM (1999) Obtención de dos variedades de quinua de bajo contenido de saponina, para La Sierra Ecuatoriana. Producción y Procesamiento de Quinua en Ecuador

    Google Scholar 

  • Oelke EA, Putnam DH, Oplinger ES (2001) Quinoa: alternative field crops manual. University of Minnesota, Minnesota

    Google Scholar 

  • Palomino GH, Segura MD, Bye RB, Mercado MR (1990) Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). Southwestern Nat 35(3):351–353

    Article  Google Scholar 

  • Palomino GL, Trejo HL, De la Cruz TE (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and Chenopodium berlandieri subsp. nuttalliae. Euphytica 164:221–230

    Article  CAS  Google Scholar 

  • Peñafiel CCE, Díaz VL (1988) Determinación espectrofotométrica de ácido oleanólico y saponinas de quinua (Chenopodium quinoa Willd) Variedad Kancolla. Arch Latinoam Nutr 38:113–125

    PubMed  Google Scholar 

  • Pérez AE, de la Cruz TE, Mapes SC, García AJM (2005) Las comunidades campesinas: un importante reservorio de recursos para la humanidad. Leisa Rev Agroecología 20(4):20–23

    Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  PubMed  CAS  Google Scholar 

  • Price HJ (1976) Evolution of DNA content in higher plants. Bot Rev 42:27–52

    Article  CAS  Google Scholar 

  • Rana TS, Narzary D, Ohri D (2010) Genetic diversity and relationships among some wild and cultivated species of Chenopodium L. (Amaranthaceae) using RAPD and DAMD methods. Curr Sci 98(6):840–846

    CAS  Google Scholar 

  • Rodríguez DR (1992) Tecnología para la producción de quinoa (Chenopodium quinoa Willd) en el Estado de México. Resúmenes del Primer encuentro de Ciencia y Tecnología del Sector Agropecuario y Forestal del Estado de México

    Google Scholar 

  • Rojas W, Barriga P, Figueroa H (2000) Multivariate analysis of the genetic diversity of Bolivian quinua germplasm. Plant Genet Resour Newsl 122:16–23

    Google Scholar 

  • Royal Horticultural Society (2001) RHS colour chart. The Royal Horticultural Society, London

    Google Scholar 

  • Ruas PM, Bonifacio A, Ruas FC, Fairbanks JD, Andersen RW (1999) Genetic relationship among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Article  Google Scholar 

  • Schwarzacher T, Heslop-Harrison SJ (2000) Reprobing of preparations In: Kingston F (ed.) Practical in situ hybridization, BIOS Scientific Publishers Limited. Oxford, UK, p 110

    Google Scholar 

  • Sederberg MC (2008) Physical mapping of ribosomal RNA genes in new world members of the genus Chenopodium using fluorescence in situ hybridization. Master of Science Thesis. Department of Plant and Wildlife Sciences. Brigham Young University, USA, p 53

    Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112(8):1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (1980) Karyomorphological studies in halophitic plants. l: some taxa of Chenopodium. Cytologia 45:257–269

    Article  Google Scholar 

  • Thies E (2000) Promising and underutilized species crops and breeds. Deutsche Gesellschaft fur Technishe Zusammenarbeit (GTZ) GmbH. Eschborn, Germany, p 14

    Google Scholar 

  • Walters TW (1987) Electrophoretic evidence for the evolutionary relationship of the tetraploid Chenopodium berlandieri to its putative diploid progenitors. Selbyana 10:36–55

    Google Scholar 

  • West CR (1946) Cultural geography of the modern Tarascan area. Smithsonian Institution, Institute of Social Anthropology. Greenwood Press, Publishers Westport. Publication No 7, pp 42–43

    Google Scholar 

  • Wilson HD (1988a) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477

    Article  Google Scholar 

  • Wilson HD (1988b) Quinoa biosystematics II: free-living populations. Econ Bot 42:478–494

    Article  Google Scholar 

  • Wilson H, Heiser BC (1979) The origin and evolutionary relationships of huauzonthe (Chenopodium nuttalliae) domesticated chenopod of Mexico. Am J Bot 66:198–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eulogio de la Cruz Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de la Cruz Torres, E. et al. (2013). The Genus Chenopodium: A Potential Food Source. In: Jain, S., Dutta Gupta, S. (eds) Biotechnology of Neglected and Underutilized Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5500-0_1

Download citation

Publish with us

Policies and ethics