Skip to main content
Log in

Quinua biosystematics II: Free-living populations

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

South AmericanChenopodium assignable to sect.Chenopodium subsect.Cellulata (Chenopodiaceae) have been classified on the basis of fruit and leaf blade morphology. Samples representing 99 free-living and domesticated populations were included in a comparative study based on electrophoretic and morphometric data. The resulting patterns of variation indicate that past reliance on the fruit for diagnostic characters has obscured biological relationships. Domesticated and free-living populations of the high Andes, distributed from northwestern Argentina to Colombia, are closely allied and clearly separate from domesticated populations of coastal Chile and free-living populations of Argentina. Circumscription of the ArgentineC. hircinum to include Andean populations is rejected. Specific differentiation among Andean populations, polyphyletic origins forC. quinoa, and the presence of different ploidy levels are not indicated. Free-living Andean types sympatric withC. quinoa are provisionally placed within that species as subsp. milleanum. While the coastal quingua domesticate is clearly distinct from the Andean weed/crop complex, it is provisionally placed within subsp.quinoa to conserve established nomenclature. The overall pattern of morphogenetic variation among South American populations suggests a co-evolutionary relationship between domesticated and free-living populations of the high Andes, with a center of diversity at the southern extreme of the Andean range. Populations ofC. hircinum represent a logical link to the progenitor of the quinua complex, although firm phyletic and systematic alignments will require more information concerning populations of south-central Chile, and further definition of relative affinities among North and South American elements of subsectionCellulata.

Résumé

La biosistemática de la quinua II: Poblaciones indomesticadas. Las especies deChenopodium sudamericanas asignadas a la secciónChenopodium subsecciónCellulata se han clasificado en base a la morfolgía del fruto y de la hoja. Se hizo un estudio comparativo que incluyó 99 poblaciones de indomesticadas y domesticadas utilizando datos morfométricos y electroforéticos. Los patrones de variación resultantes indican que el uso de las características del fruto como diagnóstico ha oscurecido las relaciones biológicas existentes. Las poblaciones provenientes de los altos Andes entre el noroeste Argentino y Colombia son muy relacionados y claramente separados de las poblaciones domesticadas de Chile y las indomesticadas de Argentina. Se descarta la inclusión de las poblaciones andinas dentro de la especie argentinaC. hircinum. No se encuentra la evidencia para diferenciación específica dentro de las poblaciones andinas; para el origen polifilético deC. quinoa, y para la presencia de diferentes niveles deploidia. Los tipos andinos indomesticados simpatricos conC. quinoa se ubican provisionalmente en la subespeciemilleanum. Aunque la quingua costeña domesticada es claramente diferente del complejo andino maleza/cultivo se ubica provisionalmente en la subespecie quinoa para conservar la nomenclatura establecida. El patrón general de distribución morfogenética entre las poblaciones sudamericanas sugiere una relación coevolutiva entre poblaciones domesticadas y las indomesticadas de los Andes altos con un centro de diversidad en el extremo sur de la distribución en los Andes. Las poblaciones deC. hircinum representan una unión lógica al progenitos del complejo quinua aunque se necesitan mayor información sobre las poblaciones del centro-sur de Chile para tener evidencia filogenética y sistemática más firme. También es necesaria una definición de las afinidades relativas entre los elementos de Norte y Suramérica en la subsecciónCellulata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aellen, P. 1929. Beitrag zur Systematik derChenopodium-Arten Amerikas, vorweigend auf Grund der Sammlung des United States National Museum in Washington, D.C. Repert. Spec. Nov. Regni Veg. 26:31–64, 119–160.

    Google Scholar 

  • —. 1960. Chenopodium. Pages 533–657in G. Hegi, ed., Illustrierte Flora von Mitteleuropa. 2nd ed. Vol. 3. C. Hanser, Munich.

    Google Scholar 

  • —, and T. Just. 1943. Key and synopsis of the American species of the genusChenopodium L. Amer. Midl. Naturalist 30:47–67.

    Article  Google Scholar 

  • Brücher, H. 1987. The Isthmus of Panama as a crossroad for prehistoric migration of domesticated plants. Geojournal 14:121–122.

    Article  Google Scholar 

  • Cusack, D. F. 1984. Quinua: grain of the Incas. The Ecologist 14:21–31.

    Google Scholar 

  • Gandarillas, H. 1984. Obtención experimental deChenopodium quinoa Willd. Instituto Boliviano de Tecnología Agropecuaria, La Paz.

    Google Scholar 

  • Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica 14:177–188.

    Article  Google Scholar 

  • Herron, J. W. 1953. Study of seed production, seed identification, and seed germination ofChenopodium spp. Mem. New York Agric. Exp. Sta. 321:3–24.

    Google Scholar 

  • Hunziker, A. T. 1952. Los pseudocereales de 1a agricultura indígena de América. ACME Agency, Buenos Aires.

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    PubMed  Google Scholar 

  • Pimentel, R. A., and J. D. Smith. 1986. BIOSTAT II—a multivariate statistical toolbox. Sigma Soft, Placentia, CA.

    Google Scholar 

  • Risi, J. C., and N. W. Galwey. 1984. TheChenopodium grains of the Andes: Inca crops for modern agriculture. Adv. Appl. Biol. 10:145–216.

    Google Scholar 

  • Rogers, J. S. 1972. Measures of genetic similarity and genetic distance. Studies in Genetics. Univ. Texas Publ. 7213:145–153.

    Google Scholar 

  • Sauer, C. O. 1969. Agricultural origins and dispersals. MIT Press, Cambridge, MA.

    Google Scholar 

  • Simmonds, N. W. 1965. The grain chenopods of the tropical American highlands. Econ. Bot. 19: 223–235.

    Google Scholar 

  • —. 1976. Quinoa and relatives. Pages 29–30in N. W. Simmonds, ed., Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Smith, B. D. 1984.Chenopodium as a prehistoric domesticate in eastern North America: evidence from Russell Cave, Alabama. Science 226:165–167.

    Article  PubMed  Google Scholar 

  • —. 1985.Chenopodium berlandieri ssp.jonesianum: evidence for a Hopewellian domesticate from Ash Cave, Ohio. Southe. Archaeol. 4:107–133.

    Google Scholar 

  • —, and V. A. Funk. 1985. A newly described subfossil cultivar of Chenopodium (Chenopodiaceae). Phytologia 57:445–448.

    Google Scholar 

  • Swofford, D. L., and R. B. Selander. 1981. BIOSYS-1, a computer program for the analysis of allelic variation in genetics. User’s manual. Univ. Illinois, Urbana.

    Google Scholar 

  • Tapia, M. 1979. Historia y distribución geográfica. Pages 11–19in M. Tapia, ed., Quinua y kañiwa: cultivos andinos. CIID, Bogota.

    Google Scholar 

  • Walters, T. W. 1985. Analysis of systematic and phyletic relationships among alveolate-fruitedChenopodium of western North America. Ph.D. dissertation, Texas A&M University, College Station.

    Google Scholar 

  • West, G. C. 1967. Nutrition of tree sparrows during winter in central Illinois. Ecology 48:58–67.

    Article  Google Scholar 

  • Williams, J. T., and J. L. Harper. 1965. Seed polymorphism and germination I. The influence of nitrates and low temperatures on the germination ofChenopodium album. Weed Res. 5:141–150.

    Article  CAS  Google Scholar 

  • Wilson, H. D. 1976. Genetic control and distribution of leucine aminopeptidase in the cultivated chenopods and related weed taxa. Biochem. Genet. 14:913–919.

    Article  PubMed  CAS  Google Scholar 

  • —. 1980. Artificial hybridization among species ofChenopodium sectionChenopodium. Syst. Bot. 5:253–263.

    Article  Google Scholar 

  • —. 1981a. Genetic variation among tetraploidChenopodium populations of southern South America (sect.Chenopodium subsect.Cellulata). Syst. Bot. 6:380–398.

    Article  Google Scholar 

  • —. 1981b. DomesticatedChenopodium of the Ozark Bluff Dwellers. Econ. Bot. 35:233–239.

    Google Scholar 

  • —. 1988a. Allozyme variation and morphological relationships ofChenopodium hircinum (s.l.). Syst. Bot. 13:215–228.

    Article  Google Scholar 

  • —. 1988b. Quinua biosystematics I: domesticated populations. Econ. Bot. 42:461–477.

    Google Scholar 

  • —, and C. B. Heiser, Jr. 1979. The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Amer. J. Bot. 66:198–206.

    Article  Google Scholar 

  • —, S. C. Barber, and T. W. Walters. 1983. Loss of duplicate gene expression in tetraploidChenopodium. Biochem. Syst. & Ecol. 11:7–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, H.D. Quinua biosystematics II: Free-living populations. Econ Bot 42, 478–494 (1988). https://doi.org/10.1007/BF02862792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02862792

Keywords

Navigation