Skip to main content

Chlorophyll Biosynthesis in Higher Plants

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. The Chl biosynthesis pathway in higher plants is complex and is mediated by more than 17 enzymes. The formation of Chl can be subdivided into four parts: (1) synthesis of 5-aminolevulinic acid (ALA), the precursor of Chl and heme; (2) formation of a pyrrole ring porphobilinogen from the condensation reaction of two molecules of ALA and assembly of four pyrroles leading to the synthesis of the first closed tetrapyrrole having inversion of ring D, i.e., uroporphyrinogen III; (3) synthesis of protoporphyrin IX via several decarboxylation and oxygenation reactions, and (4) insertion of Mg to the protoporphyrin IX (PPIX) moiety steering it to the Mg-branch of tetrapyrrole synthesis leading to the formation of Chl. In higher plants, tetrapyrrole synthesis occurs in plastids, where it is initiated by the reduction of the glutamyl moiety of glutamyl-tRNA to glutamate-1-semialdehyde. The first branch point in the pathway is the methylation of uroporphyrinogen III that directs it toward the synthesis of siroheme, an essential component of nitrite reductase and sulfite reductase, whereas decarboxylation steers it towards PPIX synthesis. A second branch point of the tetrapyrrole biosynthesis pathway is Fe insertion to PPIX leading to the synthesis of hemes. Mg-insertion to the PPIX moiety leads to the synthesis of Mg-protoporphyrins and chlorins. During the day when the ATP levels are high, the magnesium branch of the pathway is favoured, as Mg-chelatase needs ATP for the Mg-PPIX synthesis. In this chapter, we discuss the mechanism of Chl biosynthesis; heterogeneity of the monovinyl and divinyl protochlorophyllide pool; regulation of Chl biosynthesis; the intraplastidic Chl biosynthesis route, and the evolution of Chl biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

– 5-aminolevulinic acid;

ALAD:

– Aminolevulinic dehydratase;

CAO:

– Chlorophyllide a oxygenase;

CBR:

– Chlorophyll b reductase;

Chl:

– Chlorophyll;

Chlide:

– Chlorophyllide;

CHLG:

– Chlorophyll synthase; CHLP – geranyl-geranyl reductase;

CPOX:

– Coproporphyrinogen oxidase;

DV-Pchlide:

– Divinyl protochlorophyllide;

DVR:

– Divinyl reductase;

FLU:

– Negative regulator of the chlorophyll biosynthesis pathway;

FD:

– Feredoxin; GA – Gibbralic acid;

GGPP:

– Geranyl geranyl pyrophosphate;

GluRS:

– Glutamyl-tRNA synthetase;

GluTR:

– Glutamyl-tRNA reductase;

GSA:

– Glutamate 1-semialdehyde;

GSA-AT:

– Glutamate 1-semialdehyde aminotransferase;

GUN:

– Genome uncoupled;

LHCII:

– Light-harvesting complex II;

Lin2:

– Lesion initiation 2;

lip1:

– Light-independent photomorphogenesis 1;

MgCh:

– Magnesium chelatase;

MPE:

– Mg-protoporphyrin IX monomethylester;

MPEC:

– Mg-protoporphyrin IX monomethylester cyclase;

MTF:

– Mg-protoporphyrin IX methyltransferase;

MV-Pchlide:

– Monovinyl protochlorophyllide;

PBG:

– Porphobilinogen;

PBGD:

– Porphobilinogen deaminase;

PC:

– Plastocyanin;

Pchlide:

– Protochlorophyllide;

PhPP:

– Phytyl diphosphate;

PLBs:

– Prolamellar bodies;

POR:

– Protochlorophyllide oxidoreductase;

PPIX:

– Protoporphyrin IX;

PPOX:

– Protoporphyrinogen oxidase; PQ – Plastoquinone;

Protogen IX:

– Protoporphyrinogen IX;

PS II:

– Photosystem II;

SAM:

– S-adenosyl- methionine;

SDR:

– Short chain dehydrogenases/reductases;

UROD:

– Uroporphyrinogen III decarboxylase;

Urogen III:

– Uroporphyrinogen III;

UROS:

– Uroporphyrinogen III synthase

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J and Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91–94

    Google Scholar 

  • Adhikari ND, Orler R, Chory J, Froehlich JE and Larkin RM (2009) Porphyrins promote the association of genomes uncoupled 4 and a MG-chelatase subunit with chloroplast membranes. J Biol Chem 284: 24783–24796

    Article  PubMed  CAS  Google Scholar 

  • Alawady AE and Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and proto heme synthesis. Plant J 41: 282–290

    Article  PubMed  CAS  Google Scholar 

  • Alawady A, Reski R, Yaronskaya E and Grimm B (2005) Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol Biol 57: 679–91

    Article  PubMed  CAS  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 120: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductase A and B: A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Arnould S and Camadro JM (1998) The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci USA 95: 10553–10558

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Sundqvist C, Timko MP and Dahlin C (2001) The importance of the C-terminal region and Cys residues for the membrane association of the NADPH:protochlorophyllide oxidoreductase in pea. FEBS Lett 502: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Agostino A, Clarke BC, Furbank R, von Caemmerer S and Pryor AJ (2009) Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity. Plant Cell 21: 814–831

    Article  PubMed  CAS  Google Scholar 

  • Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T and Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49:1350–63

    Article  PubMed  CAS  Google Scholar 

  • Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC and Chua N-H (1996) Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601–615

    PubMed  CAS  Google Scholar 

  • Barthélemy X, Bouvier G, Radunz A, Docquier S, Schmid GH and Franck F (2000) Localization of NADPH-protochlorophyllide reductase in plastids of barley at different greening stages. Photosynth Res 64: 63–76

    Article  PubMed  Google Scholar 

  • Batschauer A and Apel K (1984) An inverse control by phytochrome of the expression of two nuclear genes in barley (Hordeum vulgare L.). Eur J Biochem 143: 593–597

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz MB (1981) New chlorophyll chromophores isolate from a chlorophyll deficient mutant of maize. Photobio­chem Photobiophys 2: 199–207

    CAS  Google Scholar 

  • Begley TP and Young H (1989) Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J Am Chem Soc 111: 3095–3096

    Article  CAS  Google Scholar 

  • Beale SI and Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (eds) Biosynthesis of Heme and Chlorophyll. pp 287–291. McGraw-Hill, New York

    Google Scholar 

  • Benli M, Schulz R and Apel K (1991) Effect of light on the NADPH-Pchlide oxidoreductase (POR) of A. thaliana. Plant Mol Biol 16: 615–625

    Article  PubMed  CAS  Google Scholar 

  • Benz J and Rüdiger W (1981a) Incorporation of 1-14 C-isopentenyldiphosphate, geraniol and farnesol into chlorophyll in plastid membrane fractions of Avena sativa L. Z Pflanzenphysiol 102: 95–100

    CAS  Google Scholar 

  • Benz J and Rüdiger W (1981b) Chlorophyll biosynthesis: various chlorophyllides as exogenous substrates for chlorophyll synthetase. Z Naturforsch 36c: 51–57

    CAS  Google Scholar 

  • Bhattacharjee S and Mukherjee AK (2003) Heavy metals alter photosynthetic pigment profiles as well as activities of chlorophyllase and 5-aminolevulinic acid dehydratase (ALAD) in Amaranthus lividus seedlings. J Environ Biol 24: 395–399

    PubMed  CAS  Google Scholar 

  • Birve SJ, Selstam E and Johansson LB (1996) Secondary structure of NADPH: protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods. Biochem J 317: 549–555

    PubMed  CAS  Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Marechal E and Joyard J (2002) The plant S-adenosyl-L-methionine: Mg-protoporphyrin IX methyl transferase is isolated in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Böddi B, Lindsten A, Ryberg M and Sundqvist C (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol Plant 76: 135–143

    Article  Google Scholar 

  • Böddi B, Ryberg M and Sundqvist C (1991) The formation of a short-wavelength chlorophyllide form at partial phototransformation of protochlorophyllide in etioplast inner membranes. Photochem Photobiol 53: 667–673

    Article  Google Scholar 

  • Böddi B, Ryberg M and Sundqvist C (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra. J Photochem Photobiol B Biol 12: 389–401

    Article  Google Scholar 

  • Böddi B, Ryberg M and Sundqvist C (1993) Analysis of the 77 K fluorescence emission and excitation spectra of isolated etioplast inner membranes. J Photochem Photobiol B Biol 21: 125–133

    Article  Google Scholar 

  • Boese QF, Spano AJ, Li JM and Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.) Identification of an unusual metal binding in the plant enzyme. J Biol Chem 266: 17060–17066

    PubMed  CAS  Google Scholar 

  • Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA and Gabbay KH (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33: 2021–2032

    Article  PubMed  CAS  Google Scholar 

  • Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9: 867–878

    Article  PubMed  CAS  Google Scholar 

  • Bruyant P and Kannangara CG (1987) Biosynthesis of 5-aminolevulinate in greening barley leaves. VII. Purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Comm 52: 99–109

    Article  CAS  Google Scholar 

  • Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S and Reinbothe C (2008) Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 105: 12629–12634

    Article  PubMed  CAS  Google Scholar 

  • Cady SS and Pinnavaia TJ (1978) Porphyrin intercalation in mice-type silicates. Inorg Chem 17: 1501–1507

    Article  CAS  Google Scholar 

  • Camadro JM, Matringe M, Scalla R and Labbe P (1991) Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem J 277: 17–21

    PubMed  CAS  Google Scholar 

  • Carey EE, Tripathy BC and Rebeiz CA (1985) Chloroplast biogenesis 51: Modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79: 1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Castelfranco PA and Beale SI (1981) Chlorophyll biosynthesis. In: Stumpf PK and Conn EE (eds) The Biochemistry of Plants: A Comprehensive Treatise, Vol 8, pp 375–421, Academic Press, New York

    Google Scholar 

  • Castelfranco PA, Thayer SS, Wilkinson JQ and Bonner BA (1988) Labeling of porphobilinogen deaminase by radioactive 5-aminolevulinic acid in isolated developing pea chloroplasts. Arch Biochem Biophys 266: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty N and Tripathy BC (1992) Involvement of singlet oxygen in photodynamic damage of isolated chloroplasts of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol 98: 7–11

    Article  PubMed  CAS  Google Scholar 

  • Che FS, Watnabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S and Isogai A (2000) Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Plant Physiol 124: 59–70

    Article  PubMed  CAS  Google Scholar 

  • Cheminant S, Wild M, Bouvier F, Pelletier S, Renou JP, Erhardt M, Hayes S, TerryMJ, Genschik P and Achard P (2011) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. Plant Cell May 27. [Epub ahead of print]

    Google Scholar 

  • Chen TC and Miller GW (1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15: 993–1005

    CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T and Brenner M (1994) A role of cytokinins in de-etiolation in Arabidopsis det mutants have an altered response to cytokinins. Plant Physiol 104: 339–347

    PubMed  CAS  Google Scholar 

  • Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R and Sagi L (2005) SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 111: 1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Cornah JE, Roper JM, Pal Sing D and Smith AG (2002) Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J 362: 423–32

    Article  PubMed  CAS  Google Scholar 

  • Crockett N, Alefounder PR, Battersby AR and Abell C (1991) Uroporphyrinogen III synthase: Studies on its mechanism of action molecular biology and biochemistry. Tetrahedron 47: 6003–6014

    Article  CAS  Google Scholar 

  • Dahlin C, Aronsson H, Wilks HM, Lebedev N, Sundqvist C and Timko MP (1999) The role of protein surface charge in catalytic activity and chloroplast membrane association of the pea NADPH:protochlorophyllide oxidoreductase (POR) as revealed by alanine scanning mutagenesis. Plant Mol Biol 39: 309–323

    Article  PubMed  CAS  Google Scholar 

  • Dahlin C, Aronsson H, Almkvist J and Sundqvist C (2000) Protochlorophyllide-independent import of two NADPH: Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109: 298–303

    Article  CAS  Google Scholar 

  • Darrah PM, Kay SA, Teakle GR and Griffiths WT (1990) Cloning and sequencing of protochlorophyllide reductase. Biochem J 265: 789–798

    PubMed  CAS  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP and Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44: 7603–7612

    Article  PubMed  CAS  Google Scholar 

  • Day IS, Golovkin M and Reddy AS (1998) Cloning of the cDNA for glutamyl-tRNA synthetase from Arabidopsis thaliana. Biochim Biophys Acta 1399: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Dayan FE, Ferreira D, Wang YH, Khan IA, McInroy JA and Pan Z (2008) A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiol 147: 1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S and Rudiger W (2003) Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta 216: 475–483

    PubMed  CAS  Google Scholar 

  • Douce R and Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6: 173–216

    Article  PubMed  CAS  Google Scholar 

  • Duggan JX and Rebeiz CA (1982) Chloroplast biogenesis. 37. Induction of chlorophyllide a (E459F675) accumulation in higher plants. Plant Sci Lett 24: 27–37

    Article  CAS  Google Scholar 

  • Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A and Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4: 5

    Article  PubMed  Google Scholar 

  • Eichacker LA, Soll J, Lauterbach P, Rudiger W, Klein RR and Mullet JE (1990) In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 265:13566–13571

    PubMed  CAS  Google Scholar 

  • Espineda CE, Linford AS, Devine D and Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 10507–10511

    Article  PubMed  CAS  Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD and Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311: 111–122

    Article  PubMed  CAS  Google Scholar 

  • Forreiter C, Van Cleve B, Schmidt A and Apel K. (1991) Evidence for a general light-dependent negative control of NADPH–protochlorophyllide oxidoreductase in angiosperms. Planta 183: 126–132

    Article  CAS  Google Scholar 

  • Franck F, Sperling U, Frick G, Pochert B, Van Cleve B, Apel K and Armstrong GA (2000) Regulation of etioplast pigment–protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH: protochlorophyllide oxidoreductases A and B. Plant Physiol 124: 1678–1696

    Article  PubMed  CAS  Google Scholar 

  • Frank HA, Young AJ, Britton G and Cogdell RJ (eds) (1999) The Photochemistry of Carotenoids, Advances in Photosynthesis, Vol 8. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frick G, Su Q, Apel K and Armstrong GA (2003) An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35: 141–153

    Article  PubMed  CAS  Google Scholar 

  • Frustaci JM, Sangwan I and O’Brian MR (1995) gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element. J Biol Chem 270: 7387–7393

    Article  PubMed  CAS  Google Scholar 

  • Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H and Takamiya K (2000) NADPH–protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Fusada N, Masuda T, Kuroda H, Shimada H, Ohta H and Takamiya K (2005) Identification of a novel cis-element exhibiting cytokinin-dependent protein binding in vitro in the 5’-region of NADPH-protochlorophyllide oxidoreductase gene in cucumber. Plant Mol Biol 59: 631–645

    Article  PubMed  CAS  Google Scholar 

  • Gaubier P, Wu HJ, Laudie M, Delseny M and Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249: 673–676

    Article  Google Scholar 

  • Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB and Mariotti D (2004) The gene geranylgeranyl reductase of peach (Prunus persica [L.] Batsch) is regulated during leaf development and responds differentially to distinct stress factors. J Exp Bot 55: 2063–2073

    Article  PubMed  CAS  Google Scholar 

  • Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Gibson KD, Neuberger A and Tait GH (1963) Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheriodes. 4. S-adenosylmethionine-magnesium protoporphyrin methyltransferase. Biochem J 88: 325–334

    PubMed  CAS  Google Scholar 

  • Gough SP, Kannangara CG and von Wettestein D (1992) Glutamate 1-semialdehyde aminotransferase as a target for herbicides. In: Boger P and Sandmann G (eds) Target Assays for Modern Herbicides and Related Phytotoxic Compounds, pp 21–27. Lewis Publishers, Chelesa

    Google Scholar 

  • Grimm B, Porra RJ, Rüdiger W and Scheer H (eds) (2006) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, Advances in Photosynthesis and Respiration, Vol 25. Springer, Dordrecht

    Google Scholar 

  • Hansson A and Jensen PE (2009) Chlorophyll limitation in plants remodels and balances the photosynthetic apparatus by changing the accumulation of photosystems I and II through two different approaches. Physiol Plant 135: 214–228

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA and Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110–2113

    Article  PubMed  CAS  Google Scholar 

  • Harper AL, von Gesjen SE, Linford AS, Peterson MP, Faircloth RS, Thissen MM and Brusslan JA (2004) Chlorophyllide a oxygenase mRNA and protein levels correlate with the chlorophyll a/b ratio in Arabidopsis thaliana. Photosynth Res 79: 149–159

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Lutz C and Grimm B (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132: 300–310

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Li J, Sundqvist C and Timko MP (1994) Leaf development age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106: 537–546

    PubMed  CAS  Google Scholar 

  • Hedtke B, Alawady A, Chen S, Börnke F and Grimm B (2007) HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Mol Biol 64: 733–742

    Article  PubMed  CAS  Google Scholar 

  • Helfrich M, Schoch S, Lempert U, Cmiel E and Rudiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a. Eur J Biochem 219: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ and Hunter CN (2004) Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase. Biochemistry 43: 8265–8271

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Ruban AV, Wilks HM and Hunter CN (2002) Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc Natl Acad Sci USA 99: 11145–11150

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Ruban AV and Hunter CN (2003) Protochloro­phyllide oxidoreductase: spectroscopic characterization of the ‘dark’ reactions. Biochemistry 42: 523–528

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Kruk J and Hunter CN (2006) Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates Biochem J 394: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Menon BR, Sakuma M and Scrutton NS (2008) Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry 47: 10991–10998

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M and Bogorad L (1975) The purification and properties of uroporphyrinogen I synthase and uroporphyrinogen III cosynthase. Interactions between the Enzymes. Ann NY Acad Sci 244: 401–418

    Article  PubMed  CAS  Google Scholar 

  • Hirashima M, Satoh S, Tanaka R and Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281: 15385–15393

    Article  PubMed  CAS  Google Scholar 

  • Hiriart JB, Lehto K, Tyystjarvi E, Junttila T and Aro EM (2002) Suppression of a key gene involved in chlorophyll biosynthesis by means of virus-inducing gene silencing. Plant Mol Biol 50: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Hodgson GW and Baker GL (1964) Evidence for porpyrin in the Orgueil meteorite. Nature 202:125–127

    Article  CAS  Google Scholar 

  • Hodgson GW and Ponnamoeruma C (1968) Prebiotic porphyrin genesis: Porphyrin from electric discharge in methane, ammonia and water vapour. Proc Natl Acad Sci USA 31:153–158

    Google Scholar 

  • Höfgen R, Axelsen KB, Kannangara CG, Schuttke I, Pohlenz, Willmitzer L, Grimm B and von Wettestein D (1994) A visible marker for antisense mRNA expression in plants: Inhibition of chlorophyll biosynthesis with a glutamate 1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91: 1726–1730

    Article  PubMed  Google Scholar 

  • Holtorf H and Apel K (1996a) Transcripts of the two NADPH–protochlorophyllide oxidoreductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Holtorf H and Apel K (1996b) The regulation of NADPH– protochlorophyllide oxidoreductase a and b in green barley plants kept under a diurnal light dark cycle. Planta 199: 289–295

    Article  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92: 3254–3258

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Kahn A, Ash DE, Gough SP and Kannagara CG (1988) Biosynthesis of 5-aminolevulinate in greening barley leaves.IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate-1-semialdehyde aminotransferase. Carlsberg Res Com 53:11–25

    Article  CAS  Google Scholar 

  • Horie Y, Ito H, Kusaba M, Tanaka R and Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456

    Article  PubMed  CAS  Google Scholar 

  • Hsu WP and Miller GW (1970) Coproporphyrinogenase in tobacco (Nicotiana tabacum L.). Biochem J 117: 215–220

    PubMed  CAS  Google Scholar 

  • Hu G, Yalpani N, Briggs SP and Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10: 1095–1105

    PubMed  CAS  Google Scholar 

  • Huang DD, Wang WY, Gough SP and Kannangara CG (1984) Delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482–1484

    Article  PubMed  CAS  Google Scholar 

  • Huang YS and Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150: 636–645

    Article  PubMed  CAS  Google Scholar 

  • Hukmani P and Tripathy BC (1994) Chlorophyll biosynthetic reactions during senescence of excised barley (Hordeum vulgare L. cv IB 65) Leaves. Plant Physiol 105: 1295–1300

    PubMed  CAS  Google Scholar 

  • Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K and Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282: 19282–19291

    Article  PubMed  CAS  Google Scholar 

  • Ilag LL, Kumar AM and Soll D (1994) Light reduction of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265–275

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Okamoto H, Iwasaki Y and Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Jacobs NJ and Jacobs JM (1979) Microbial oxidation of protoporphyrinogen: an intermediate in heme and chlorophyll biosynthesis. Arch Biochem Biophys 197: 396–403

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JM and Jacobs NJ (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial charac­terization of the enzyme from barley organelles. Biochem J 244: 219–224

    PubMed  CAS  Google Scholar 

  • Jain M and Gadre RP (2004) Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. J Plant Physiol 161: 251–255

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g, and -h. Mol Gen Genet 250: 383–394

    PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD and Hunter CN (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and MgATP dependent interaction of ChlI and ChlD subunits. Biochem J 339:127–134

    Article  PubMed  CAS  Google Scholar 

  • Jilani A, Kar S, Bose S and Tripathy BC (1996) Regulation of the carotenoid content and chloroplast development by levulinic acid. Physiol Plant 96: 139–145

    Article  CAS  Google Scholar 

  • Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287: 797–815

    Article  PubMed  CAS  Google Scholar 

  • Jones RM and Jordan PM (1994) Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochem J 299: 895–902

    PubMed  CAS  Google Scholar 

  • Jordan PM and Shemin D (1980) Mechanism of action of 5-aminolevulinic acid dehydratase: Stepwise order of addition of the two molecules of 5-aminilevulinic acid in the enzymatic synthesis of porphobilinogen. J Chem Soc Chem Comm 240–242

    Google Scholar 

  • Joyard J, Block M, Pineau B, Albrieux C and Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265: 21820–21827

    PubMed  CAS  Google Scholar 

  • Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H and An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44: 463–472

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Lee HJ, Lee Y, Kang K, Kim YS, Grimm B and Back K (2008) Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Mol Biol 67: 535–546

    Article  PubMed  CAS  Google Scholar 

  • Kaczor CM, Smith MW, Sangwan I and O’Brian MR (1994) Plant delta-aminolevulinic acid dehydratase. Expression in soybean root nodules and evidence for a bacterial lineage of the Alad gene. Plant Physiol 104: 1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Kagan RM and Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310: 417–427

    Article  PubMed  CAS  Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP and Rasmussen SK (1984) Biosynthesis of 5-ALA in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Com 49: 417–437

    Article  CAS  Google Scholar 

  • Kannagara CG, Gough SP, Bruyant P, Hoober JK, Kahn A and Wettestein DV (1988) tRNAglu as a cofactor on δ-aminolevulinate biosynthesis: Steps that regulatechlorophyll synthesis. Trends Biol Sci 13: 139–143

    Article  Google Scholar 

  • Kannangara CG, Andersen RV, Pontoppidan B, Willows R and von Wettstein D (1994) Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolaevulinate. Ciba Found Symp 180: 3–20

    PubMed  CAS  Google Scholar 

  • Kannangara CG, Vothknecht UC, Hansson M and von Wettstein D (1997) Magnesium chelatase: association with ribosome and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet 254: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Keller Y, Bouvier F, D’`Harlingue A and Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis. Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Kervinen J, Dunbrack Rl Jr, Litwin S, Martins J, Scarrow RC, Volin M, Yeung AT, Yoon E and Jaffe EK (2000) Porphobilinogen synthase from pea: Expression from an artificial gene, kinetic characterisation and novel implication for subunit interactions. Biochemistry 39: 9018–9029

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Lee JY, Cho HS, Lee SS, Ha HJ, Kim S, Choi D and Pai HS (2005) Inactivation of organellar glutamyl- and seryl-tRNA synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants. J Biol Chem 280: 37098–38106

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R and Messerschmidt A (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis EMBO J 23: 1720–1728

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL and Rebeiz CA (2001) Chloroplast biogenesis 84: Solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295: 214–219

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W and Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94: 14168–14172

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W and Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24: 523–531

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP and Grimm B (1995a) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14: 3712–3720

    PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP and Grimm B (1995b) Coproporphyrinogen III oxidase from barley and tobacco-sequence analysis and initial expression studies. Planta 196: 796–803

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP and Grimm B (1997) Isolation and characterization of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX. Plant Mol Biol 35: 1053–1056

    Article  PubMed  CAS  Google Scholar 

  • Kumar AM and Söll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol 122: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Kumar AM, Csankovszki G and Söll D (1996) A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol Biol 30: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Masuda T, Ohta H, Shioi Y and Takamiya K (1995) Light-enhanced gene expression of NADPH–protochlorophyllide oxidoreductase in cucumber. Biochem Biophys Res Commun 210: 310–316

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2001) Cytokinin-induced transcriptional activation of NADPH–protochlorophyllide oxidoreductase gene in cucumber. J Plant Res 114: 1–7

    Article  CAS  Google Scholar 

  • Kusnetsov V, Herrmann RG, Kulaeva ON and Oelmüller R (1998) Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol Gen Gene 259: 21–28

    CAS  Google Scholar 

  • Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M and Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Kusumi J, Sato A and Tachidi H (2006) Relaxation of functional constraint on light-independent protochlorophyllide reductase in Thuja. Mol Biol Evol 23: 941–948

    Article  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR and Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299: 902–906

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD (1991) The evolution of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 367–383. CRC Press, Boca Raton

    Google Scholar 

  • Larkum AWD (1999) The evolution of algae. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments, pp 31–48. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lebedev N and Timko MP (1999) Protochlorophyllide oxidoreductase B-catalysed protochlorophyllide photoreduction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plants. Proc Natl Acad Sci USA 96: 9954–9959

    Article  PubMed  CAS  Google Scholar 

  • Lebedev N, Van Cleve B, Armstrong G and Apel K (1995) Chlorophyll synthesis in a deetiolated (det340) mutant of Arabidopsis without NADPH–protochlorophyllide (PChlide) oxidoreductase (POR) a and photoactive PChlide-F655. Plant Cell 7: 2081–2090

    PubMed  CAS  Google Scholar 

  • Lebedev N, Karginova O, McIvor W and Timko MP (2001) Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH: protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry 40: 12562–12574

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Lee SB, hung JS, Han SU, Han O, Guh JO, Jeon JS, An G and Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl-ether herbicide acifluorfen. Plant Cell Physiol 41: 743–749

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Kim C, Lee DW and Apel K (2003) TIGRINA d, required for regulating the biosynthesis of tetrapyrolles in barley, is an ortholog of FLU gene of Arabidopsis thaliana. FEBS Lett 553: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H and An G (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57: 805–818

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I and Grimm B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122: 75–84

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I and Grimm B (2006) Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. Plant J 48: 499–510

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I, Kruse E, Mock HP and Grimm B (1997) Cloning and characterisation of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94: 8895–8900

    Article  PubMed  CAS  Google Scholar 

  • Li J, Spano AJ and Timko MP (1991) Isolation and characetisation of nuclear genes encoding the ALA dehydratase of pea (Pisum sativum L.). Plant Physiol 96: 125–127

    Google Scholar 

  • Liedgens W, Grutzmann R and Schneider HAW (1980) Highly efficient purification of the labile plant enzyme 5-aminolevulinate dehydratase (EC 4.2.1.24) by means of monoclonal antibodies. Z Naturforsch 35c: 958–962

    CAS  Google Scholar 

  • Lim SH, Witty M, Wallace-Cook AD, Ilag LI and Smith AG (1994) Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Mol Biol 26: 863–872

    Article  PubMed  CAS  Google Scholar 

  • Lindsten A, Ryberg M and Sundqvist C (1988) The polypeptide composition of highly purified prolamellar bodies and prothylakoids from wheat (Tritium aestivum) as revealed by silver staining. Physiol Plant 72: 167–176

    Article  CAS  Google Scholar 

  • Lindstein A, Welch CJ, Schoch S, Ryberg M, Rüdiger W and Sundqvist C (1990) Chlorophyll synthatase is latent in well preserved prolamellar bodies of etiolated wheat. Physiol Plant 80: 277–285

    Article  Google Scholar 

  • Liu N, Yang YT, Liu HH, Yang GD, Zhang NH and Zheng CC (2004) NTZIP antisense plants show reduced chlorophyll levels. Plant Physiol Biochem 42: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Luo J and Lim CK (1993) Order of urogen III decarboxylation on incubation of PBG and urogen III with erythrocyte UDC. Biochem J 289: 529–532

    PubMed  CAS  Google Scholar 

  • Madsen O, Sandal L, Sandal NN and Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Manohara MS and Tripathy BC (2000) Regulation of protoporphyrin IX biosynthesis by intraplastidic compartmentalization and adenosine triphosphate. Planta 212: 52–59

    Article  PubMed  CAS  Google Scholar 

  • Mapleston RE and Griffiths WT (1980) Light modulation of the activity of protochlorophyllide reductase. Biochem J 189: 125–133

    PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M and Kowallik KV (1998). Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Martin BM, Grimm B, Mock HP, Huber R and Messerschmidt A (2001) Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism. J Biol Chem 276: 44108–44116

    Article  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Masuda T and Takamiya K (2004) Novel insights into enzymology, regulation and physiological functions of light-dependant Protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81: 1–29

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H and Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74: 165–172

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H and Takamiya K (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44: 963–974

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Ikeda R, Masuda T, Hashimoto H, Tsuchiya T, Kojima H, Nomata J, Fujita Y, Mimuro M, Ohta H and Takamiya K (2009) Prolamellar bodies formed by cyanobacterial protochlorophyllide oxidoreductase in Arabidopsis. Plant J 58: 952–960

    Article  PubMed  CAS  Google Scholar 

  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P and Douce R (1992a) Localisation within the chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether like herbicides. J Biol Chem 267: 4646–4651

    PubMed  CAS  Google Scholar 

  • Matringe M, Mornet R and Scalla R. (1992b) Characterization of [3 H] acifluorfen binding to purified pea etioplasts and evidence that protogen oxidase specifically binds acifluorfen. Eur J Biochem 209: 861–868

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Hortensteiner S, Thomas H and Krautler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 12: 1403–1409

    Google Scholar 

  • Matile P, Hortensteiner S and Thomas H (1999) CHLOROPHYLL DEGRADATION. Annu Rev Plant Physiol Plant Mol Biol 50: 67–95

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K and Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135: 2379–2391

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC and Terry MJ (2002a) Light-signalling pathways leading to the coordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32: 549–559

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC and Terry MJ (2002b) Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant Physiol 130: 402–414

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC, Fischer A, Kumar AM, Soll D and Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Menon BR, Waltho JP, Scrutton NS and Heyes DJ (2009) Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 284: 18160–18166

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R and Apel K (2002) Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl–tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27–30

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 12826–12831

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chilara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402

    Article  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastidto- nucleus signal transduction. Proc Natl Acad Sci USA 98: 2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Mock HP and Grimm B (1997) Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light dependent necrosis. Plant Physiol 113: 1101–1112

    PubMed  CAS  Google Scholar 

  • Mock HP, Trainotti L, Kruse E and Grimm B (1995) Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol 28: 245–256

    Article  PubMed  CAS  Google Scholar 

  • Mock HP, Heller W, Molina A, Neubohn B, Sandermann H and Grimm B (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defence responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274: 4231–4238

    Article  PubMed  CAS  Google Scholar 

  • Mohanty S, Grimm B and Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224: 692–699

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra A and Tripathy BC (2002) Detection of protoporphyrin IX in envelope membranes of pea chloroplasts. Biochem Biophys Res Commun 299: 751–754

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra A and Tripathy BC (2003) Developmental changes in sub-plastidic distribution of chlorophyll biosynthetic intermediates in cucumber (Cucumis sativus L.). J Plant Physiol 160: 9–15

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra A and Tripathy BC (2007) Differential distribution of chlorophyll biosynthetic intermediates in stroma, envelope and thylakoid membranes in Beta vulgaris. Photosynth Res 94: 401–410

    Article  PubMed  CAS  Google Scholar 

  • Mosinger E, Batschauer A, Schafer E and Apel K (1985) Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare). Eur J Biochem 147: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Nakagawara E, Sakuraba Y, Yamasato A, Tanaka R and Tanaka A (2007) Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J 49: 800–809

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Satoh S, Tanaka R and Tanaka A (2004) Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta 218: 1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Tanaka R and Tanaka A (2007) The major route for chlorophyll synthesis includes [3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana. Plant Cell Physiol 48: 1803–1808

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G and Hayashida N (2005) Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol 46: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y and Takamiya K (1995) Cloning, subcellular localization and expression of CHLI, a subunit of magnesium- chelatase in soybean. Biochem Biophys Res Com 215: 422–428

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H and Takamiya K (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg++ concentration-dependent chlH protein within the chloroplast. Plant Cell Physiol 39: 275–284

    Article  PubMed  CAS  Google Scholar 

  • Nandi DL and Waygood ER (1967) Biosynthesis of porphyrins in wheat leaves. II. 5-aminolevulinate hydrolyase. Canad J Biochem 45: 327–336

    CAS  Google Scholar 

  • Narita S, Tanaka R, Ito T, Okada K, Taketani S and Inokuchi H (1996) Molecular cloning and characterisation of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Oliver RP and Griffiths WT (1982) Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol 70: 1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N Shimada H, Ohta H and Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-potochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474: 133–136

    Article  PubMed  CAS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A and Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Gräfe S, Kruse E, Hanel F and Grimm B (1997) Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12: 981–990

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Kruse E and Grimm B (1999) Expression studies on tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264–273

    Article  CAS  Google Scholar 

  • Papenbrock J, Pfundel E, Mock HP and Grimm B (2000a) Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduced chlorophyll synthesis in transgenic tobacco plants. Plant J 22: 155–164

    Article  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E and Grimm B (2000b) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122: 1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Parham R and Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231: 164–169

    Article  PubMed  CAS  Google Scholar 

  • Pattanayak GK and Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem Biophys Res Commun 291: 921–924

    Article  PubMed  CAS  Google Scholar 

  • Pattanayak GK, Biswal AK, Reddy VS and Tripathy BC (2005) Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun 326: 466–471

    Article  PubMed  CAS  Google Scholar 

  • Peter E, Rothbart M, Oelze ML, Shalygo N, Dietz KJ and Grimm B (2010) Mg protoporphyrin monomethylester cyclase deficiency and effects on the tetrapyrrole metabolism in different light conditions. Plant Cell Physiol 2010 May 11. [Epub ahead of print]

    Google Scholar 

  • Pineau B, Dubertret G, Joyard J and Douce R (1986) Fluorescence properties of the envelope membranes from spinach chloroplasts. Detection of protochlorophyllide. J Biol Chem 261: 9210–9215

    PubMed  CAS  Google Scholar 

  • Polking GF, Hannapel DJ and Gladon RJ (1995) A cDNA clone for 5-aminolevulinic acid dehydratase from tomato (Lycopersicon esculentum Mill.). Plant Physiol 107: 1033–1034

    Article  PubMed  CAS  Google Scholar 

  • Plöscher M, Granvogl B, Reisinger V and Eichacker LA (2009) Identification of the N-termini of NADPH:protochlorophyllide oxidoreductase A and B from barley etioplasts (Hordeum vulgare L.) FEBS J 276: 1074–1081

    Article  PubMed  CAS  Google Scholar 

  • Pontier D, Albrieux C, Joyard J, Lagrange T and Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282: 2297–2304

    Article  PubMed  CAS  Google Scholar 

  • Pontoppidan B and Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNAglu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529–537

    Article  PubMed  CAS  Google Scholar 

  • Popperl G, Oster U, Blos I and Rudiger W (1997) Magnesium chelatase of Hordeum vulgare L. is not activated by light but inhibited by pheorphorbide. Z Naturforsch 52c: 144–152

    Google Scholar 

  • Porra RJW, Schäfer E, Cmiel IK and Scheer H (1993) Derivation of the formyl group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett 371: 21–24

    Article  Google Scholar 

  • Poulson R and Polglasse WJ (1974) Aerobic and anaerobic coproporphyrinogen oxidase activities in extract from Saccharomyces cerevisiae. J Biol Chem 249: 6367–6371

    PubMed  CAS  Google Scholar 

  • Ratinaud MH, Thomes JC and Julien R (1983) Glutamyl-tRNA synthetases from wheat. Isolation and characterization of three dimeric enzymes. Eur J Biochem 135: 471–477

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Benning C, Bohnert HJ, Danielle H, Hoober JK, Lichtenthaler HK, Portis AR and Tripathy BC (eds) (2010) The Chloroplast: Basics and Applications, Advances in Photosynthesis and Respiration, Vol 31. Springer, Dordrecht

    Google Scholar 

  • Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206–6212

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Lebedev N and Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80–84

    Article  CAS  Google Scholar 

  • Reinbothe C, Buhr F, Bartsch S, Desvignes C, Quigley F, Pesey H and Reinbothe S (2006) In vitro-mutagenesis of NADPH:protochlorophyllide oxidoreductase B: two distinctive protochlorophyllide binding sites participate in enzyme catalysis and assembly. Mol Genet Genomics 275: 540–552

    Article  PubMed  CAS  Google Scholar 

  • Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B and Czarnecki O (2010) Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant Cell Physiol 51: 670–681

    Article  PubMed  CAS  Google Scholar 

  • Rissler HM, Collakova E, DellaPenna D, Whelan J and Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128: 770–779

    Article  PubMed  CAS  Google Scholar 

  • Rudiger W, Benz J and Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Runge S, Sperling U, Frick G, Apel K and Armstrong GA (1996) Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. Plant J 9: 513–523

    Article  PubMed  CAS  Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP and Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102: 5886–5891

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba Y, Yamasato A, Tanaka R and Tanaka A (2007) Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase. Plant Physiol Biochem 45: 740–749

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba Y, Yokono M, Akimoto S, Tanaka R, Tanaka A. (2010) Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol 51: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Sangwan I and O’Brian MR (1993) Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol 102: 829–834

    Article  PubMed  CAS  Google Scholar 

  • Santel HJ and Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 120: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A and Kusaba M (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57: 120–131

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M and Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. J Biol Chem 276: 4293–4297

    Article  PubMed  CAS  Google Scholar 

  • Sawers RJ, Farmer PR, Moffett P and Brutnell TP (2006) In planta transient expression as a system for genetic and biochemical analyses of chlorophyll biosynthesis. Plant Methods 2:15

    Article  PubMed  CAS  Google Scholar 

  • Schaumburg A, Schneider-Poetsch HA and Eckerskorn C (1992) characterization of plastid 5-aminolevulinate dehydratase (ALAD; EC 4.2.1.24) from spinach (Spinacia oleracea L.) by sequencing and comparison with non-plant ALAD enzymes. Z Naturforsch C 47: 77–84

    PubMed  CAS  Google Scholar 

  • Scheumann V, Ito H, Tanaka A, Schoch S and Rüdiger W (1996) Substrate specificity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare L.). Eur J Biochem 242: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Scheumann V, Klement H, Helfrich M, Oster U, Schoch S and Rüdiger W (1999) Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 445: 445–448

    Article  PubMed  CAS  Google Scholar 

  • Schmid HC, Oster U, Kögel J, Lenz S and Rüdiger W (2001) Cloning and characterisation of chlorophyll synthase from Avena sativa. J Biol Chem 382: 903–911

    CAS  Google Scholar 

  • Schmid HC, Rassadina V, Oster U, Schoch S and Rudiger W (2002) Pre-loading of chlorophyll synthase with tetraprenyl diphosphate is an obligatory step in chlorophyll biosynthesis. J Biol Chem 383: 1769–1778

    CAS  Google Scholar 

  • Schoefs B and Franck F (1993) Photoreduction of protochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves. J Expt Bot 44: 1053–1057

    Article  CAS  Google Scholar 

  • Schoefs B and Bertrand M (2000) The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process. FEBS lett 486: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B and Franck F (2003) Protochlorophyllide reduction: mechanism and evolution. Photochem Photobiol 78: 543–557

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Garnir HP and Bertrand M (1994) Comparison of the photoreduction protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown beans as a function of age. Photosynth Res 41: 405–417

    Article  CAS  Google Scholar 

  • Schoefs B, Bertrand M and Franck F (2000a) Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves. Photochem Photobiol 72: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Bertrand M and Franck F (2000b) Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants. Photochem Photobiol 72: 660–668

    Article  PubMed  CAS  Google Scholar 

  • Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG and Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Schon A, Kannangara CG, Gough S and Soll D (1988) Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Steinmuller K, Klaas M, Forreiter C, Rasmussen S, Hiller C and Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH–protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PH and Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31: 529–537

    Article  PubMed  CAS  Google Scholar 

  • Scolnik P and Bartley GE (1996) A table of some cloned plant genes involved in isoprenoid biosynthesis. Plant Mol Biol Rep 14: 305–319

    Article  CAS  Google Scholar 

  • Seyedi M, Selstam E, Timko MP and Sundqvist C (2001a) The cytokinin 2-isopentenyladenine causes partial reversion to skotomorphogenesis and induces formation of prolamellar bodies and protochlorophyllide657 in the lip1 mutant of pea. Physiol Plan. 112: 261–272

    Article  CAS  Google Scholar 

  • Seyedi M, Timko MP and Sundqvist C (2001b) The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of pea. Plant Cell Physiol 42: 931–941

    Article  PubMed  CAS  Google Scholar 

  • Shalygo NV, Mock HP, Averina NG and Grimm B (1998) Photodynamic action of uroporphyrin and protochlorophyllide in greening barley leaves treated with cesium chloride. J Photochem Photobiol B 42: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Shalygo N, Czarnecki O, Peter E, Grimm B (2009) Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Mol Biol 71: 425–436

    Article  PubMed  CAS  Google Scholar 

  • Shashidhara LS and Smith AG (1991) Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines. Proc Natl Acad Sci USA 88: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Shemin D (1976) 5-Aminolevulinic acid dehydratase: Structure, function and mechanism. Philos Trans R Soc London 273: 109–115

    Article  CAS  Google Scholar 

  • Shetty AS and Miller GW (1969) Purification and general properties of 5-aminolevulinate dehydratase from Nicotiana tabaccum L. Biochem J 114: 331–337

    PubMed  CAS  Google Scholar 

  • Shibata K (1957) Spectroscopic studies of chlorophyll formation in intact leaves. J Biochem Tokyo, Japan 44: 147–173

    CAS  Google Scholar 

  • Shibata H and Ochiai H (1977) Purification and properties of δ-aminolevulinic acid dehydratase from radish cotyledons. Plant Cell Physiol 18: 420–429

    Google Scholar 

  • Smith AG (1988) Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J 249: 423–428

    PubMed  CAS  Google Scholar 

  • Smith AG and Francis JE (1981) Investigations of rat liver uroporphyrinogen decarboxylase. comparisons of porphyrinogens I and III as substrate nad inhibition by porphyrins. Biochem J 195: 241–250

    PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Rüdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ and Timko MP (1991) Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.). Biochim Biophys Acta 1076: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, He Z, Michel H, Hunt DF and Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18: 967–972

    Article  PubMed  CAS  Google Scholar 

  • Spencer P and Jordan PM (1994) 5-Aminolevulinic acid dehydratase: Characterization of the α and ß metal-binding sites of the Escherichia coli enzyme. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 50–64. John Weily and Sons, Chichester

    Google Scholar 

  • Spencer P and Jordan PM (1995) Characterization of the two 5-aminolevulinic acd binding sites of 5-aminolevulinic acid dehydratase from Escheichia coli. Biochem J 305: 151–158

    PubMed  CAS  Google Scholar 

  • Sperling U, Van Cleve B, Frick G, Apel K and Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12: 649–658

    Article  PubMed  CAS  Google Scholar 

  • Sperling U, Franck F, Cleve BV, Frick G, Apel K and Armstrong GA (1998) Etioplast differentiation in Arabidopsis: Both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10: 283–296

    PubMed  CAS  Google Scholar 

  • Stenbaek A and Jensen PE. (2010) Redox regulation of chlorophyll biosynthesis. Phytochem 71: 853–859

    Article  CAS  Google Scholar 

  • Stobart AK and Ameen-Bukhari I (1984) Regulation of δ-aminolaevulinic acid synthesis and protochlorophyllide regeneration in the leaves of dark-grown barley (Hordeum vulgare) seedlings. Biochem J 222: 419-426

    PubMed  CAS  Google Scholar 

  • Stobart AK and Ameen-Bukhari I (1986) Photoreduction of protochlorophyllide and its relationship to δ-aminolaevulinic acid synthesis in the leaves of dark-grown barley (Hordeum vulgare) seedlings. Biochem J 236: 741-748

    PubMed  CAS  Google Scholar 

  • Su Q, Frick G, Armstrong G and Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805–813

    Article  PubMed  CAS  Google Scholar 

  • Sytina OA, Heyes DJ, Hunter CN, Alexandre MT, Van Stokkum IH, Van Grondelle R and Groot ML (2008) Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 456: 1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Tan FC, Cheng Q, Saha K, Heinemann IU, Jahn M, Jahn D and Smith AG (2008) Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. Biochem J 410: 291–299

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R and Tanaka A (2005) Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth Res 85: 327–340

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R and Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321–46

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H and Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110: 1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Oster U, Kruse E, Rudiger W and Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120: 695–704

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K and Tanaka A (2001) Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J 26: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Tchuinmogue SJ, Bruyant P and Balange AP (1992) Immunological characterization of two 5-aminolevulinate dehydratase in radish leaves. Plant Physiol Biochem 30: 255–261

    Google Scholar 

  • Teakle GR and Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296: 225–230

    PubMed  CAS  Google Scholar 

  • Tewari AK and Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117: 851–858

    Article  CAS  Google Scholar 

  • Tewari AK and Tripathy BC (1999) Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). Planta 208: 431–437

    Article  CAS  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S and Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100: 16119–16124

    Article  PubMed  CAS  Google Scholar 

  • Townley HE, Sessions RB, Clarke AR, Dafforn TR and Griffiths WT (2001) Protochlorophyllide oxidoreductase: a homology model examined by site-directed mutagenesis. Proteins 44: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC and Rebeiz CA (1985) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal Biochem 149: 43–61

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC and Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261: 13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC and Rebeiz CA (1988) Chloroplast biogenesis 60: Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Mohapatra A and Gupta I (2007) Impairment of the photosynthetic apparatus by oxidative stress induced by photosensitization reaction of protoporphyrin IX. Biochim Biophys Acta 1767: 860–868

    Article  PubMed  CAS  Google Scholar 

  • Tsai S, Bishop DF and Desnick RJ (1987) Purification and properties of uroporphyrinogen III synthase from human erythrocytes. J Biol Chem 262: 1268–1273

    PubMed  CAS  Google Scholar 

  • Tsang EW, Yang J, Chang Q, Nowak G, Kolenovsky A, McGregor DI and Keller WA (2003) Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene. Plant Mol Biol 51: 191–201

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    Google Scholar 

  • Walker CJ and Weinstein JD (1994) The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 299: 277–284

    PubMed  CAS  Google Scholar 

  • Walker CJ and Willows RD (1997) Mechanism and Regulation of Mg-chelatase. Biochem J 327: 321–333

    PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599–602

    PubMed  CAS  Google Scholar 

  • Walker CJ, Castelfranco PA and Whyte BJ (1991) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276: 691–697

    PubMed  CAS  Google Scholar 

  • Warabi E, Usui K, Tanaka Y and Matsumoto H (2001) Resistance of a soybean cell line to oxifluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pest Manag Sci 57: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Che F-S, Iwano M, Takayama S, Yoshida S and Isogai A (2001) Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplast by alternative use in-frame initiation codons. J Biol Chem 276: 20474–20481

    Article  PubMed  CAS  Google Scholar 

  • Whyte BJ and Castelfranco PA (1993) Further obser­vations on the Mg-protoporphryin IX monomethyl ester (oxidative) cyclase system. Biochem J 290: 355–359

    PubMed  CAS  Google Scholar 

  • Wiktorsson B, Engdahl S, Zhong LB, Böddi B, Ryberg M and Sundqvist C (1993) The effect of cross-liking of the subunits of NADPH-protochlorophyllide oxidoreductase of the aggregational state of protochlorophyllide. Photosynthtica 29: 205–218

    CAS  Google Scholar 

  • Wilks HM and Timko MP (1995) A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 92: 724–728

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Hardeman K, Fowler J and Rivin C (2006) Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. Plant J 45: 727–739

    Article  PubMed  CAS  Google Scholar 

  • Wise RR and Hoober JK (eds) (2006) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23. Springer, Dordrecht

    Google Scholar 

  • Witty M, Wallace-Cook AD, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol 103: 139–147

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H and Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Vavilin D and Vermaas W (2001) Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc Natl Acad Sci USA 98: 14168–14173

    Article  PubMed  CAS  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R and Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17: 1585–1597

    Article  PubMed  CAS  Google Scholar 

  • Yamasato A, Tanaka R and Tanaka A (2008) Loss of the N-terminal domain of chlorophyllide a oxygenase induces photodamage during greening of Arabidopsis seedlings. BMC Plant Biol 8: 64

    Article  PubMed  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N and Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224: 700–709

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS and Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62: 325–337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Professor Govindjee for critically reading the manuscript and encouragement and help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baishnab C. Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tripathy, B.C., Pattanayak, G.K. (2012). Chlorophyll Biosynthesis in Higher Plants. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_3

Download citation

Publish with us

Policies and ethics