Skip to main content
Log in

HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Glutamyl-tRNA reductase (GluTR) is encoded by HEMA in higher plants and catalyzes in plastids the initial enzymatic step of tetrapyrrole biosynthesis eventually leading to heme and chlorophyll. GluTR activity is subjected to a complex regulation on multiple expression levels. An ethanol-inducible HEMA-RNA-interference (RNAi) gene construct was introduced into the tobacco genome to study the primary effects of low GluTR content on the tetrapyrrole biosynthetic pathway. During the first days of induced HEMA silencing the chlorophyll and heme contents were diminished in young leaves. HEMA mRNA and GluTR protein content were also strongly reduced. However, expression analyses revealed that none of the other tetrapyrrole biosynthesis genes were affected on the transcriptional level in a nine days period after HEMA inactivation. Previously generated transgenic tobacco lines with RNAi silenced expression of the glutamate 1-semialdehyde aminotransferase (GSA) gene did also not display changes of transcripts from selected genes of tetrapyrrole biosynthesis and photosynthesis. Although the transcript levels were not decreased after inactivation of HEMA and GSA-expression, enzyme activities for Mg chelatase and Fe chelatase were lower, which occurred in parallel to the loss of chlorophyll and heme content. Posttranslational modification of enzymes downstream of ALA-biosynthesis is proposed as a regulatory mechanism to adjust the flux through tetrapyrrole biosynthesis in balance to supply of ALA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alawady A, Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  PubMed  CAS  Google Scholar 

  • Alawady A, Reski R, Yaronskaya E, Grimm B (2004) Cloning and expression of tobacco Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol Biol 57:679–691

    Article  CAS  Google Scholar 

  • Beale SI (2006) Biosynthesis of 5-aminolevulinic acid. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Advances in photosynthesis and respiration, Vol. 25, Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Bougri O, Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9:867–878

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hofius D, Sonnewald U, Bornke F (2003) Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant J 36:731–740

    Article  PubMed  CAS  Google Scholar 

  • Cornah JE, Terry MJ, Smith AG (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 8:224–230

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochem 44:7603–7612

    Article  CAS  Google Scholar 

  • Gough SP, Kannangara CG (1977) Synthesis of δ-aminolevulinate by a chloroplast stroma preparation from greening barley leaves. Carlberg Res Commun 42:459–464

    CAS  Google Scholar 

  • Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K (2004) Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Kruse E, Grimm B (1997) Restriction of chlorophyll synthesis due to expression of glutamate 1-semialdehyde aminotransferase antisense RNA does not reduce the light harvesting antenna size in tobacco. Plant Physiol 113:1113–1124

    PubMed  Google Scholar 

  • Huang DD, Wang WY, Gough SP, Kannangara CG (1984) δ-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225:1482–1484

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Axelsen KB, Kannangara CG, Schuttke I, Pohlenz HD, Willmitzer L, Grimm B, von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91:1726–1730

    Article  PubMed  Google Scholar 

  • Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275

    Article  PubMed  CAS  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii. FEBS Lett 314:77–80

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Moser J, Schubert WD and Heinz DW (2006) Transfer RNA-dependent aminolevulinic acid formation structure and function of glutamyl-tRNA synthetase, reductase and glutamate-1-semialdehyde-2,1-aminomutase In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Advances in Photosynthesis and Respiration, vol. 25, Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, Springer, Dordrecht, The Netherlands, pp. 223–235

  • Kannangara CG, Gough SP, Oliver RP, Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49:417–437

    Article  CAS  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14:3712–3720

    PubMed  CAS  Google Scholar 

  • Kruse E, Grimm B, Beator J, Kloppstech K (1997) Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in greening barley. Planta 202:235–241

    Article  CAS  Google Scholar 

  • Kumar AM, Csankovszki G, Söll D (1996) A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol. Biol 30:419–426

    Article  PubMed  CAS  Google Scholar 

  • Kumar AM, Soll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol 122:49–56

    Article  PubMed  CAS  Google Scholar 

  • Luer C, Schauer S, Mobius K, Schulze J, Schubert WD, Heinz DW, Jahn D, Moser J (2005) Complex formation between glutamyl-tRNA reductase, glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. J Biol Chem 280:18568–18572

    Google Scholar 

  • Masuda T, Ohta H, Shioi Y et al (1995) Stimulation of glutamyl tRNA reductase activity by benzyladenine in greening cucumber cotyledons. Plant Cell Physiol 36:1237–1243

    CAS  Google Scholar 

  • Masuda T, Ohta H, Shioi Y et al (1996) Light mediated regulation of 5-aminolevulinic acid synthesis system in Cucumis sativus: light stimulates activity of glutamyl-tRNA reductase during greening. Plant Physiol Biochem 34:11–16

    CAS  Google Scholar 

  • McCormac AC, Terry MJ (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC, Fischer A, Kumar AM, Söll D, Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25:549–561

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831

    Article  PubMed  CAS  Google Scholar 

  • Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D, Heinz DW (2001) V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20:6583–6590

    Article  PubMed  CAS  Google Scholar 

  • Moser J, Schubert WD, Heinz DW, Jahn D (2002) Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation. Biochem Soc Trans 30:579–584

    Article  PubMed  CAS  Google Scholar 

  • Nogaj LA, Beale SI (2005) Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 280:24301–24307

    Article  PubMed  CAS  Google Scholar 

  • Nogaj LA, Srivastava A, van Lis R, Beale SI (2005) Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. Plant Physiol 139:389–396

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Kruse E, Grimm B (1999) Expression studies in tetrapyrrole biosynthesis—Inverse maxima of magnesium chelatase and ferrochelatase. Planta 208:264–273

    Article  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000a) Role of Mg-chelatase activity for the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Pfündel E, Mock HP, Grimm B (2000b) Decreased and increased expression of the subunit CHL I diminishes Mg-chelatase activity and rescues chlorophyll synthesis in transgenic plants. Plant J 22:155–164

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—Studies for intracellular signalling involved in metabolic and developmental control of plastids. Planta 213:667–681

    Article  PubMed  CAS  Google Scholar 

  • Pontoppidan B, Kannangara CG (1994) Purification and partial characterization of barley glutamate-tRNA reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225:529–537

    Article  PubMed  CAS  Google Scholar 

  • Rosahl S, Schell J, Willmitzer L (1987) Expression of a tuber-specific storage protein in transgenic tobacco plants: demonstration of an esterase activity. EMBO J 6:1155–1159

    PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284

    Article  PubMed  Google Scholar 

  • Sambrock J, Fritsch E, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory 1, New York

    Google Scholar 

  • Singh DP, Cornah JE, Hadingham S, Smith AG (2002) Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol Biol 50:773–788

    Article  PubMed  CAS  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equation for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Terry MJ, Kendrik RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome-deficient aurea and yellow green-2 mutants of tomato. Plant Physiol 119:143–152

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110:1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Ujwal ML, McCormac AC, Goulding A, Kumar AM, Söll D, Terry MJ (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Mol Biol 50:83–91

    Article  PubMed  CAS  Google Scholar 

  • Vothknecht UC, Kannangara CG, von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47:513–519

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JD, Beale SI (1985) Enzymatic conversion of glutamate to 5-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch.Biochem. Biophys 237:454–464

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1991) Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts. Substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95:1189–1196

    PubMed  CAS  Google Scholar 

  • Weinstein JD, Beale SI (1984) Biosynthesis of protoheme and heme a precursors solely from glutamate in the unicellular red alga Cyanidium caldarium. Plant Physiol 74:146–151

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Mikolajczyk S, Alawady A, Lokstein H, Grimm B (2004) The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett 571:119–123

    Article  PubMed  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedtke, B., Alawady, A., Chen, S. et al. HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Mol Biol 64, 733–742 (2007). https://doi.org/10.1007/s11103-007-9194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9194-3

Keywords

Navigation