Skip to main content
Log in

Biomass and organic acids in sandstone of a weathering building: Production by bacterial and fungal isolates

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ten fungal and nine bacterial strains were isolated from a weathering sandstone building. Their growth, organic acid production, and acidification capacity were assessed in culture under nutritional conditions similar to those in situ. Biomass (10–50 nmol phospholipid-PO4g−1) within the rock was small compared to soils. The isolated organisms were able to produce high amounts of those acids found in the sandstone, but acid production did not cause a drastic reduction in culture pH. It is suggested that the importance of acidification in microbial degradation of sandstone has been overestimated and that, under in situ pH and nutritional conditions, cation chelation by microbially produced organic acid anions may be more relevant to the weathering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett PC, Melcer ME, Siegel DI, Hassett JP (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C, Geochim Cosmochim Acta 52:1521–1530

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Caccamo F, Carfagnini G, Di Corcia A, Samperi R (1986) Improved high-performance liquid chromatographic assay for determining organic acids in wines. J Chromatog 362:47–53

    Article  CAS  Google Scholar 

  4. Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cellular Comp Physiol 49:25–68

    Article  CAS  Google Scholar 

  5. Duff RB, Webley DM, Scott RO (1963) Solubilization of minerals and materials by 2-ketogluconic acid-producing bacteria. Soil Sci 95:105–114

    Article  CAS  Google Scholar 

  6. Eckhardt FEW (1979) Über die Einwirkung heterotropher Mikroorganismen auf die Zersetzung silikatischer Minerale. Z Pflanzenernähr Bodenkund 142:434–445

    CAS  Google Scholar 

  7. Eckhardt FEW (1985) Mechanisms of the microbial degradation of minerals in sandstone monuments, medieval frescoes, and plaster. In: Proceedings of the Fifth International Congress on Deterioration and Conservation of Stone. Lausanne, pp 643–652

  8. Eckhardt FEW (1988) Influence of culture media employed in studying microbial weathering of building stone and monuments by heterotrophic bacteria and fungi. In: Proceedings of the Sixth International Congress on Deterioration and Conservation of Stone, supplement. Nicholas Copernicus University Press, Torun, pp 71–81

    Google Scholar 

  9. Federle TW (1986) Microbial distribution in soil-New techniques. In: Megusar F, Ganter M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljublana, pp 493–498

    Google Scholar 

  10. Henderson MEK, Duff RB (1963) The release of metallic and silicate ions from minerals, rocks, and soils by fungal activity. J Soil Sci 14:236–246

    Article  CAS  Google Scholar 

  11. Hirsch P, Rades-Rohkohl E (1988) Some special problems in the determination of viable counts of groundwater microorganisms. Microbial Ecol 16:99–113

    Article  Google Scholar 

  12. Kuroczkin J, Bode K, Petersen K, Krumbein WE (1988) Some physiological characteristics of fungi isolated from sandstones. In: Proceedings of the Sixth International Congress on Deterioration and Conservation of Stone, supplement. Nicholas Copernicus University Press, Torun, pp 21–25

    Google Scholar 

  13. Mandl I, Grauer A, Neuberg C (1953) Solubilization of insoluble matter in nature. II. The part played by salts of organic and inorganic acids occurring in nature. Biochim Biophys Acta 10:540–569

    Article  CAS  PubMed  Google Scholar 

  14. Mehltretter CL, Alexander BH, Rist CE (1953) Sequestration by sugar acids. Ind Eng Chem 49:2782–2784

    Article  Google Scholar 

  15. Neuberg C, Salvesen RH, Oster G (1961) Role of phosphoglyceric acid salts in the solubilization of inorganic substances in nature. Arch Bioc Biophys 95:533–539

    Article  CAS  Google Scholar 

  16. Phelps TJ, Ringelberg D, Hendrick D, Davis J, Fliermans CB, White DC (1988) Microbial biomass and activities associated with subsurface environments contaminated with chlorinated hydrocarbons. Geomicrobiol J 6:157–170

    Article  CAS  Google Scholar 

  17. Schenk D, Petersen A, Matthess G (1989) Acceleration and retardation of silicate weathering due to organic substances. In: Miles DL (ed) Water-rock interaction. AA Balkema, Rotterdam, pp 605–607

    Google Scholar 

  18. Siebert JS, Palmer RJ Jr, Hirsch P (1991) Analysis of free amino acids in microbially colonized sandstone by precolumn phenyl isothiocyanate derivatization and high-performance liquid chromatography. Appl Environm Microbiol 57:879–881

    CAS  Google Scholar 

  19. Silverman MP, Munoz E (1970) Fungal attack on rock: Solubilization and altered infrared spectra. Science 169:985–987

    Article  CAS  PubMed  Google Scholar 

  20. Smith GA, Nickels JS, Kerger BD, Davis JD, Collins SP, Wilson JT, McNabb JF, White DC (1986) Quantitative characterization of microbial biomass and community structure in subsurface material: A prokaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111

    CAS  Google Scholar 

  21. Staley JT (1968)Prosthecomicrobium andAncalomicrobium: New prosthecate freshwater bacteria. J Bacteriol 95:1921–1942

    CAS  PubMed  Google Scholar 

  22. Vestal JR (1988) Biomass of the cryptoendolithic microbiota from the antarctic desert. Appl Environm Microbiol 54:957–959

    CAS  Google Scholar 

  23. Vestal JR, White DC (1989) Lipid analysis in microbial ecology. BioScience 39:535–541

    Article  CAS  PubMed  Google Scholar 

  24. Wagner E, Schwartz W (1965) Geomikrobiologische Untersuchungen. IV. Untersuchungen über die mikrobielle Verwitterung von Kalkstein im Karst. Z Allg Mikrobiol 5:52–76

    CAS  PubMed  Google Scholar 

  25. Wagner M, Schwartz W (1967) Geomikrobiologische Untersuchungen. VIII. Über das Verhalten von Bakterien auf der Oberfläche von Gesteinen und Mineralien und ihre Rolle bei der Verwitterung. Z Allg Mikrobiol 7:33–52

    CAS  PubMed  Google Scholar 

  26. Wagner M, Schwartz W (1967) Geomikrobiologische Untersuchungen. IX. Verwertung von Gesteins- und Mineralpulvern als Mineralsalzquelle für Bakterien. Z Allg Mikrobiol 7:129–141

    CAS  PubMed  Google Scholar 

  27. Webley DM, Henderson MEK, Taylor IF (1963) The microbiology of rocks and weathered stones. J Soil Sci 14:102–112

    Article  Google Scholar 

  28. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  29. Wolters B, Sand W, Ahlers B, Sameluck F, Meincke M, Meyer C, Krause-Kupsch T, Bock E (1988) Nitrification—The main source for nitrate deposition in building stones. In: Proceedings of the Sixth International Congress on Deterioration and Conservation of Stone. Nicholas Copernicus University Press, Torun, pp 24–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, R.J., Siebert, J. & Hirsch, P. Biomass and organic acids in sandstone of a weathering building: Production by bacterial and fungal isolates. Microb Ecol 21, 253–266 (1991). https://doi.org/10.1007/BF02539157

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02539157

Keywords

Navigation