Skip to main content

The Primary Structure of Plant Pathogenesis-related Glucanohydrolases and Their Genes

  • Chapter
Genes Involved in Plant Defense

Part of the book series: Plant Gene Research ((GENE))

Abstract

The endo-type glucanohydrolases ß-1,3-glucanase (E.C. 3.2.1.39) and chitinase (E.C. 3.2.1.14) are abundant proteins widely distributed in seedplant species (Clarke and Stone, 1962; Ballance and Manners, 1978; Powning and Irzykiewicz, 1965). The physiological functions of ß-1,3- glucanase and chitinase are not known. Based on the distribution of the enzyme and its putative substrates such as callose, it has been proposed that ß-1,3-glucanases may have a role in fruit ripening (Hinton and Pressey, 1980), pollen tube growth (Roggen and Stanley, 1969; Ori et al., 1990), coleoptile growth (Masuda and Wada, 1967), regulation of transport through vascular tissues (Clarke and Stone, 1962), cellulose biosynthesis (Meier et al., 1981) and cell division (Waterkeyn, 1967; Fulcher et al., 1976). Although the existence of other substrates has not been ruled out, chitin, the known substrate of chitinase, is not found in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles F.B., Bosshart R.P., Forrence L.E., Habig W.H. (1971) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Antoniw J.F., Ritter C.E., Pierpoint W.S., Van Loon L.C. (1980) Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47: 79–87

    Article  CAS  Google Scholar 

  • Antoniw J.F., Ooms G., White R.F., Wullems G.J., Vloten-Doting L. (1983) Pathogenesis-related proteins in plants and tissues of Nicotiana tabacum transformed by Agrobacterium tumefaciens. Plant Mol Biol 2: 317–320

    Article  CAS  Google Scholar 

  • Awade A. (1989) Les protéines PR (pathogenesis-related) de haricot: induction par infection virale on traitement chimmique. Purification, propriétés sérologiques, activités biologiques et structure primaire. Doctoral Dissertation, Université Louis Pasteur, Strasbourg, France

    Google Scholar 

  • Ballance G.M., Manners D.J. (1978) Partial purification and properties of an endo-1,3-ß-Dglucanase from germinated rye. Phytochemistry 17: 1539–1543

    Article  CAS  Google Scholar 

  • Ballance G.M., Svedsen I. (1988) Purification and amino acid sequence determination of an endo-1,3-ß-glucanase from barley. Carlsberg Res Comm 53: 411–419

    Article  CAS  Google Scholar 

  • Bauw G., De Loose M., Inzé D., Van Montagu M., Vandekerckhove J, (1987) Alterations in the phenotype of plant cells studied by NH2-terminal amino acid-sequence analysis of proteins electro blotted from two-dimensional gel-separated total extracts. Proc Natl Acad Sci USA 84: 4806–4810

    Article  PubMed  CAS  Google Scholar 

  • Benfrey P.N., Chua N.-H. (1989) Regulated genes in transgenic plants. Science 244: 174–181

    Article  Google Scholar 

  • Bernasconi P., Pilet P.E., Jolles P. (1985) A one-step purification of a plant lysozyme from in vitro cultures of Rubus hispidus. FEBS Lett 186: 263–266

    Article  CAS  Google Scholar 

  • Bernasconi P., Locher R., Pilet P.E., jolles J., Jolles P. (1987) Purification and N-terminal amino-acid sequence of a basic lysozyme from Parthenocissus quinquifolia cultured in vitro. Biochim Biophys Acta 915: 254–260

    Article  CAS  Google Scholar 

  • Bol J.F. (1988) Structure and expression of plant genes encoding pathogenesis-related proteins. In: Verma D.P.S., Goldberg R.B. (eds) Temporal and spatial regulation of plant genes. Springer, Wien New York pp 201–221

    Chapter  Google Scholar 

  • Boller T. (1985) Induction of hydrolases as a defense reaction against pathogens. In: Key J.L., Kosuge T. (eds) Cellular and molecular biology of plant stress. AR Liss, New York, pp 247–262 (UCLA Symp Mol Cell Biol NS, vol 22)

    Google Scholar 

  • Boller T. (1987) Hydrolytic enzymes in plant disease resistance. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions, vol 2. Macmillan, New York, pp 385–413

    Google Scholar 

  • Boller T. (1988) Ethylene and the regulation of antifungal hydrolases in plants. Oxford Surv Plant Mol Cell Biol 5: 145–174

    CAS  Google Scholar 

  • Boller T., Métraux J.-P. (1988) Extracellular localization of chitinase in cucumber. Physiol Mol Plant Pathol 33: 11–16

    Article  CAS  Google Scholar 

  • Boller T., Vögeli U. (1984) Vacuolar localization of ethylene-induced chitinase in bean leaves. Plant Physiol 74: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Boller T., Gehri A., Mauch F., Vögeli U. (1983) Chitinase in bean leaves: induction by ethylene, purification. properties, and possible function. Planta 157: 22–31

    Article  CAS  Google Scholar 

  • Bowles D.J., Marcus S.E., Pappin D.I.C., Findlay J.B.C., Eliopoulos E., Maycox P.R., Burgess J. (1986) Posttranslational processing of concanavalin A precursors in jack bean cotyledons. J Cell Biol 102: 1284–1297

    Article  PubMed  CAS  Google Scholar 

  • Broekaert W., van Paris J., Leyns F., Joos H., Peumans W.J. (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245: 1100–1102

    Article  PubMed  CAS  Google Scholar 

  • Broekaert W., Lee H.-I., Kush A., Chua N.-H., Raikhel N. (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber free (Hevea brasiliensis). Proc Natl Acad Sci USA 87: 7633–7637

    Article  PubMed  CAS  Google Scholar 

  • Broglie K.E., Gaynor J.J., Broglie R.M. (1986) Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci USA 83, 6820–6824

    Article  PubMed  CAS  Google Scholar 

  • Broglie K.E., Biddle P., Cressman R., Broglie R. (1989) Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell 1: 599–607

    PubMed  CAS  Google Scholar 

  • Cameron D.R. (1952) Inheritance in Nicotiana tabacum. XXIV. Intraspecific differences in chromosome structure. Genetics 37: 288–296

    PubMed  CAS  Google Scholar 

  • Carr J.P., Klessig D.F. (1989) The pathogenesis-related proteins of plants. Genet Engineer 11: 65–109

    Article  CAS  Google Scholar 

  • Carrington D.M., Auffret A., Hanke D.E. (1985) Polypeptide ligation occurs during posttranslational modification of concanavalin A. Nature 313: 64–67

    Article  PubMed  CAS  Google Scholar 

  • Castresana C., de Carvalho F., Gheysen G., Habets M., Inzé D, van Montagu M. (1990) Tissue specific and pathogen-induced regulation of a Nicotiana plumbaginifolia ß-1,3-glucanase gene. Plant Cell 2: 1131–1143

    PubMed  CAS  Google Scholar 

  • Chrispeels M.J., Hartl P.M., Sturm A., Faye L. (1986) Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. J Biol Chern 261: 10021–10024

    CAS  Google Scholar 

  • Clarke A.E., Stone B.A. (1962) ß-1,3-Glucan hydrolases from the grape vine (Vitis vinifera) and other plants. Phytochemistry 1: 175–188

    Article  CAS  Google Scholar 

  • Cornelissen B.J.C., Hooft van Huijsduijnen R.A.M., van Loon L.C., van Boom JH, Tromp M., Bol J.F. (1985) Virus-induced synthesis of messenger RNAs for precursor of pathogenesisrelated proteins in tobacco. EMBO J 4: 2167–2171

    PubMed  Google Scholar 

  • Cornelissen B.J.C., Horowitz J., van Kan J.A.L., Goldberg R.B., Bol J.F. (1987) Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucleic Acids Res 15: 6799–6811

    Article  PubMed  CAS  Google Scholar 

  • Côté F., Cutt J.R., Asselin A., Klessig D.F. (1991) Pathogenesis-related acidic ß-1,3-glucanase genes of tobacco are regulated by both stress and developmental signals. Mol Plant Microbe Interact 4: 173–181

    Article  PubMed  Google Scholar 

  • Crouch M.L., Tenbarge K.M., Simon A.E., Ferl R. (1983) cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Molec Appl Genet 2: 273–283

    CAS  Google Scholar 

  • Cutt J.R., Klessig D.F. (1992) Pathogenesis-related proteins. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer. Wien New York, pp 209–243 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • De Loose M., Alliotte T., Gheysen G., Genetello C., Gielen J., Soetaert P., Van Montagu M., Inzé D. (1988) Primary structure of a hormonally regulated ß-glucanase of Nicotiana plumbaginifolia. Gene 70: 12–23

    Article  Google Scholar 

  • Dickerson R.E., Geis I. (1969) The structure and function of proteins. Harper and Row, New York

    Google Scholar 

  • Dorel C., Voelker T.A., Herman E.M., Chrispeels M.J. (1989) Transport of proteins to the plant vacuole is not by bulk flow through the secretory system and requires positive sorting information. J Cell Biol 198: 327–337

    Article  Google Scholar 

  • Döring H.-P., Starlinger P. (1986) Molecular genetics of transposable elements in plants. Annu Rev Genet 20: 175–200

    Article  PubMed  Google Scholar 

  • Durand-Tardif M. (1986) Etude de l’induction, par I’ethephon, de l’expression du gène codant pour la chitinase chez la tomate et analyse de la structure de ce gène. Doctoral Dissertation, Université de Paris Sud, Paris, France

    Google Scholar 

  • Edington B.V., Lamb C.J., Dixon R.A. (1991) cDNA cloning and characterization of a putative 1,3-ß-D-glucanase transcript by fungal elicitor in bean cell suspension cultures. Plant Mol Biol 16: 18–94

    Article  Google Scholar 

  • Esaka M., Enoki K., Kouchi B., Sasaki T. (1990) Purification and characterization of abundant secreted protein in suspension-cultured pumpkin cells. Plant Physiol 93: 1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Felix G., Meins F Jr (1985) Purification, immunoassay and characterization of an abundant cytokinin-regulated polypeptide in cultured tobacco tissues. Evidence the protein is a ß-1,3-glucanase. Planta 164: 423–428

    Article  CAS  Google Scholar 

  • Felix G., Meins F. Jr (1986) Developmental and hormonal regulation of ß-1,3-glucanase in tobacco. Planta 167: 206–211

    Article  CAS  Google Scholar 

  • Felix G., Meins F. Jr (1987) Ethylene regulation of ß-1,3-glucanase in tobacco. Planta 172: 386–392

    Article  CAS  Google Scholar 

  • Fincher G.B., Lock P.A., Morgan M.M., Lingelbach K., Wettenhall R.E.H., Mercer J.F.B., Brandt A., Thomsen K.K. (1986) Primary structure of the (1 → 3,1→4)-ß-D-glucan 4-glucohydrolase from barley aleurone. Proc Natl Acad Sci USA 83: 2081–2085

    Article  PubMed  CAS  Google Scholar 

  • Fraser R.S.S. (1981) Evidence for the occurrence of the ‘pathogenesis-related’ proteins in leaves of healthy tobacco plants during flowering. Physiol Plant Pathol 19: 69–76

    CAS  Google Scholar 

  • Fukuda Y., Ohme M., Shinshi H. (1990) Gene structure and expression of a tobacco endochitinase gene in suspension cultured tobacco cells. Plant Mol Biol 16: 1–10

    Article  Google Scholar 

  • Fulcher R.G., McCully M.E., Setterfield G., Sutherland J. (1976) ß-1,3-Glucans may be associated with cell plate formation during cytokinesis. Can J Bot 54: 459–542

    Article  Google Scholar 

  • Garcia-Olmedo F., Carmona M.J., Lopez-Fando J.J., Fernandez J.A., Castagnaro A., Molina C., Hernandez-Lucas C., Carbonero P. (1992) Characterization and analysis of thionin genes. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 283–301 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Gaynor J.J. (1988) Primary structure of an endochitinase mRNA from Solanum tuberosum. Nucleic Acids Res 16: 5210

    Article  PubMed  CAS  Google Scholar 

  • Gaynor J.J., Unkenholz K.M. (1989) Sequence analysis of a genomic clone encoding an endochitinase from Solanum tuberosum. Nucleic Acids Res 17: 5855–5856

    CAS  Google Scholar 

  • Gerstel D.U. (1960) Segregation in new allopolyploids of Nicotiana. I. Comparison of 6 x (N. tahacum x tomentosiformis) and 6 x (N. tabacum x otophora). Genetics 45: 1723– 1734

    PubMed  CAS  Google Scholar 

  • Gerstel D.U. (1963) Segregation in new allopolyploids of Nicotiana. II. Discordant ratios from individual loci in 6 x (N. tabacum x N. sylvestris). Genetics 48: 677–689

    PubMed  CAS  Google Scholar 

  • Gerstel D.U. (1966) Evolutionary problems in some polyploid crop plants. Hereditas [Suppl] 2: 481–504

    Google Scholar 

  • Gerstel D.U. (1976) Tobacco. In: Simmonds N.W. (ed) Evolution of crop plants. Longman, London, pp 273–277

    Google Scholar 

  • Gheysen G., Inzé D., Soetaert P., van Montagu M., Castresana C. (1990) Sequence of a Nicotiana plumbaginifolia ß(J,3)-glucanase gene encoding a vacuolar isoform. Nucleic Acids Res 18: 6685

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi S., Martin C., Vallee J.C. (1970) Hypersensibilite aux virus, températures et proteines solubles chez le Nicotiana Xanthi-nc. Apparition de nouvelles macromolécules lors de la répression de synthèse virale. C R Acad Sci Paris D 270: 2383–2386

    CAS  Google Scholar 

  • Godiard L., Ragueh F., Froissard D., Lequay J.-J., Grosset J., Chartier Y., Meyer Y., Marco Y. (1990) Analysis of the synthesis of several pathogenesis-related proteins in tobacco leaves infiltrated with water with compatible and incompatible isolates of Pseudomonas salanacearum. Mol Plant Microbe Interact 3: 207–213

    Article  CAS  Google Scholar 

  • Goodall G.J., Filipowicz W. (1989) The AU-rich sequences present in introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483

    Article  PubMed  CAS  Google Scholar 

  • Goodspeed T.H. (1954) The genus Nicotiana. Chronica Botanica, Waltham, MA

    Google Scholar 

  • Gray J.C., Kung S.D., Wildman S.G., Sheen S.J. (1974) Origin of Nicotiana tabacum L. detected by polypeptide composition of fraction I protein. Nature 252: 226–227

    Article  PubMed  CAS  Google Scholar 

  • Hein P. (1966) Grooks. The MIT Press, Cambridge

    Google Scholar 

  • Herget T., Schell J., Schreier P.H. (1990) Elicitor-specific induction of one member of the chitinase gene family in Arachis hypogaea. Mol Gen Genet 224: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Hinton D.M., Pressey R. (1980) Glucanase in fruits and vegetables. J Amer Soc Hort Sci 105: 499–502

    CAS  Google Scholar 

  • Høj P.B., Hartman D.J., Morrice N.A., Doan D.N.P., Fincher G.B. (1989a) Purification of (1 → 3) ß-glucan endohydrolase isozyme II from germinated barley and determination of its primary structure from a cDNA clone. Plant Mol Biol 13: 31–42

    Article  PubMed  Google Scholar 

  • Høj P.B., Rodriguez E.B., Stick R.V., Stone B.A. (1989b) Differences in active site structure in a family of ß-glucan endohydrolases deduced from the kinetics of inactivation by epoxyalkyl ß-oligoglucosides. J Biol Chern 264: 4939–4947

    Google Scholar 

  • Hooft van Huijsduijnen R.A.M., van Loon L.C.,. Bol J.F. (1986) cDNA cloning of six mRNAS induced by TMV infection of tobacco and a characterization of their translation products. EMBO J 5: 2057–2061

    Google Scholar 

  • Hooft van Huijsduijnen R.A.M., Kauffmann S., Brederode F.T., Cornelissen B.J.C., Legrand M., Fritig B., Bol J.F. (1987) Homology between chitinases that are induced by TMV infection of tobacco. Plant Mol Biol 9: 411–420

    Article  Google Scholar 

  • Huang J.-K, Wen L., Swegle M., Tran H.-C., Thin T.H., Naylor H.M., Muthukrishnan S., Reeck G.R. (1991) Nucleotide sequence of a rice genomic clone that encodes a class I endochitinase. Plant Mol Biol 16: 479–480

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S., Mikkelsen J.D., Hejgaard J. (1990) Characterization of two antifungal endochitinases from barley grain. Physiol Plant 79: 554–562

    Article  CAS  Google Scholar 

  • Jamet E., DUff A., Fleck J. (1987) Absence of some truncated genes in amphidiploid Nicotiana tabacum. Gene 59: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Jekel P.A., Hartman J.B.H., Beintema J.J. (1991) The primary structure of he va mine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Eur J Biochem 200: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Joshi C.P. (1987) Putative polyadenylation signals in nuclear genes of higher plants: compilation and analysis. Nucleic Acids Res 15: 9627–9640

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann S., Legrand M., Geoffroy P., Fritig B. (1987) Biological function of ‘pathogenesisrelated’ proteins: four PR proteins of tobacco have 1,3-ß-glucanase activity. EMBO J 6:3209–3212

    PubMed  CAS  Google Scholar 

  • Keefe D., Hinz U., Meins F. Jr (1990) The effect of ethylene on the cell-type-specific and intracellular localization of ß-1,3-glucanase and chitinase in tobacco leaves. Planta 182: 43–51

    Article  CAS  Google Scholar 

  • Klebl F., Tanner W. (1989) Molecular cloning of a cell wall exo-ß-1,3-glucanase from Saccharomyces cerevisiae. J Bacteriol 171: 6259–6264

    PubMed  CAS  Google Scholar 

  • Kombrink E., Schroder M., Hahlbrock K. (1988) Several “pathogenesis-related” proteins in potato are 1,3-ß-glucanases and chitinases. Proc Natl Acad Sci USA 85:782–786

    Article  PubMed  CAS  Google Scholar 

  • Kombrink E., Beerhues L., Schröder M., Witte B., Hahlbrock K. (1990) Local and systemic gene activation in potato leaves infected with Phytophthora infestans. In: Gottfert M., Hennecke H., Paul H. (eds) Abstracts of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions. Eidgenossische Technische Hochschule, Zürich, p 203

    Google Scholar 

  • Kragh K.M., Jacobsen S., Mikkelsen J.D. (1990) Induction, purification and characterization of barley leaf chitinase. Plant Sci 71: 55–68

    Article  CAS  Google Scholar 

  • Kragh K.M., Jacobsen S., Mikkelsen J.D., Nielsen K.A. (1991) Purification and characterization of three chitinases and one ß-I,3-glucanase accumulating in the medium of cell suspension cultures of barley (Hordeum vulgare L.). Plant Sci 76: 65–77

    Article  CAS  Google Scholar 

  • Kush A., Goyvaerts E., Chye M.-L., Chua N.-H. (1990) Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci USA 87: 1787–1790

    Article  PubMed  CAS  Google Scholar 

  • Laflamme D., Roxby R. (1989) Isolation and nucleotide sequence of cDNA clones encoding potato chitinase genes. Plant Mol Biol 13: 249–250

    Article  PubMed  CAS  Google Scholar 

  • Leah R., Mikkelsen J., Mundy J., Svendsen I.B. (1987) Identification of a 28000 Dalton endochitinase in barley endosperm. Carlsberg Res Comm 52: 31–37

    Article  CAS  Google Scholar 

  • Leah R., Tommerup H., Svendsen I.B., Mundy J. (1991) Biochemical and molecular characterization of three barley seed proteins with anti-fungal properties. J Biol Chem 266: 1564–1573

    PubMed  CAS  Google Scholar 

  • Legrand M., Kauffmann S., Geoffroy P., Fritig B. (1987) Biological function of pathogenesisrelated proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754

    Article  PubMed  CAS  Google Scholar 

  • Lerner D.R., Raikhel N.V. (1989) Cloning and characterization of root specific barley lectin. Plant Physiol 91: 124–129

    Article  PubMed  CAS  Google Scholar 

  • Linthorst H.J.M., Melchers L.S., Mayer A., van Roekel J.S.C., Cornelissen B.J.C., Bol J.F. (1990a) Analysis of gene families encoding acidic and basic ß-1,3-glucanases of tobacco. Proc Natl Acad Sci USA 87: 8756–8760

    Article  PubMed  CAS  Google Scholar 

  • Linthorst H.J.M., van Loon L.C., van Rossum C.M.A., Mayer A., Bol J.F., van Roekel J.S.C., Meulenhoff J.S., Cornelissen B.J.C. (I990b) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact 3: 252–258

    Google Scholar 

  • Lucas J., Henschen A., Lottspeich F., Vögeli U., Boller T. (1985) Amino-terminal sequence of ethylene-induced bean leaf chitinase reveals similarities to sugar-binding domains of wheat germ agglutinin. FEBS Lett 193: 208–210

    Article  CAS  Google Scholar 

  • MacDonald H., Jones A.M., King P.J. (1991) Photoaffinity labelling of soluble auxin-binding proteins. J Biol Chem 266: 7393–7399

    PubMed  CAS  Google Scholar 

  • Maeda N., Smithies O. (1986) The evolution of multigene families: human haptoglobin genes. Annu Rev Genetics 20: 81–108

    Article  CAS  Google Scholar 

  • Maher E.A., Lamb C.J., Dixon R.A. (1990) Molecular analysis of defense-related hydrolases from alfalfa. In: Göttfert M., Hennecke H., Palu H. (eds) Abstracts of the 5th International Symposium Molecular Genetics of Plant-Microbe Interactions. Eidgenössische Technische Hochschule. Zurich, p 215

    Google Scholar 

  • Lotan T., Ori N., Fluhr R. (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881–887

    PubMed  CAS  Google Scholar 

  • Margis-Pinheiro M., Metz-Boutigue M.H., Awade A., de Tapia M., le Ret M., Burkard G. (1991) Isolation of a complentary DNA encoding the bean PR4 chitinase: an acidic enzyme with an amino-terminus cysteine-rich domain. Plant Mol Biol 17: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Masuda Y., Wada S. (1967) Effect of ß-1,3-glucanase on the elongation growth of oat coleoptile. Bot Mag 80: 100–102

    CAS  Google Scholar 

  • Mauch F., Staehelin L.A. (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and ß-1,3-glucanase in bean leaves. Plant Cell 1: 447–457

    PubMed  CAS  Google Scholar 

  • Mauch F., Mauch-Mani B., Boller T. (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and ß-1,3-glucanase. Plant Physiol 88: 936–942

    Article  PubMed  CAS  Google Scholar 

  • Meier H., Buchs L., Buchala A.J., Homewood T. (1981) (1→3)-ß-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose fibres. Nature 289: 821–822

    Article  CAS  Google Scholar 

  • Meins F. Jr, Ahl P. (1989) Induction of chitinase and ß-1;3-glucanase in tobacco leaves infected with Pseudomonas tabaci and Phytophthora parasitica var. nicotianae. Plant Sci 61: 155–161

    Article  CAS  Google Scholar 

  • Memelink J., Hoge J.H.C., Schilperoort R.A. (1987) Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J 6: 3579–3583

    PubMed  CAS  Google Scholar 

  • Métraux J.-P., Boller T. (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol Mol Plant Patho128: 161–169

    Article  Google Scholar 

  • Metraux J.-P., Burkhart W., Moyer M., Dincher S., Middlesteadt W., Williams S., Payne G., Carnes M., Ryals J. (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctionallysozyme/chitinase. Proc Natl Acad Sci USA 86: 896–900

    Article  PubMed  CAS  Google Scholar 

  • Meyer A.D. (1990) Vacuolar localization of ß-1,3-glucanase and chitinase in tobacco. Diplomarbeit Universität Basel, Basle, Switzerland

    Google Scholar 

  • Mohnen D., Shinshi H., Felix G., Meins F. Jr (1987) Hormonal regulation of ß-1,3-glucanase messenger RNA levels in cultured tobacco tissues. EMBO J 4: 1631–1635

    Google Scholar 

  • Moore A.E., Stone B.A. (1972) A ß-1,3-glucan hydrolase from Nicotiana glutinosa. II. Specificity, action pattern and inhibitor studies. Biochim Biophys Acta 258: 248–264

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y., Burger M.M. (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116–3112

    PubMed  CAS  Google Scholar 

  • Neale A.D., Wahleithner J.A., Lund M., Bonnett H.T., Kelly A., Meeks-Wagner D.R., Peacock W.J., Dennis E.S. (1990) Chitinase, ß-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684

    PubMed  CAS  Google Scholar 

  • Neuhaus J.-M., Sticher L., Meins Jr, Boller T. (1991a) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88: 10362–10366

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J.-M., Ahl-Goy P., Hinz U., Flores S., Meins F. Jr (1991b) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K.K., Mikkelsen J.D. (1990) Purification and characterization of chitinases and ß-1,3-glucanases from Beta vulgaris leaves infected with Cercospora beticola. In: Göttfert M., Hennecke H., Paul H. (eds) Abstracts of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions. Eidgenossische Technische Hochschule: Zürich p 220

    Google Scholar 

  • Ohme-Takagi M., Shinshi H. (1990) Structure and expression of a tobacco ß-1,3-glucanase gene. Plant Mol Biol 15: 941–946

    Article  PubMed  CAS  Google Scholar 

  • Okamuro J.K., Goldberg R.B. (1985) Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Mol Gen Genet 198: 290–298

    Article  CAS  Google Scholar 

  • Ori N., Sessa G., Lotan T., Himmelhoch S., Fluhr R. (1990) A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9: 3249–3436

    Google Scholar 

  • Owens R.J., Northcote D.H. (1980) The purification of potato (Solanum tuberosum) cultivar King-Edwards lectin by affinity chromatography on a fetuin sepharose matrix. Phytochemistry 19: 1861–1862

    Article  CAS  Google Scholar 

  • Parent J.G., Asselin A. (1984) Detection of pathogenesis-related proteins (PR or b) and of other proteins in the intercelIular fluid of hypersensitive plants infected with tobacco mosaic virus. Can J Bot 62: 564–659

    Article  CAS  Google Scholar 

  • Parsons T.J., Bradshaw H.D. Jr, Gordon M.P. (1989) Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci USA 86: 7895–7899

    Article  PubMed  CAS  Google Scholar 

  • Payne G., Middlesteadt W., Desai N., Williams S., Dincher S., Carnes M., Ryals J. (1989) Isolation and sequence of a genomic clone encoding the basic form of pathogenesisrelated protein 1 from Nicotiana tabacum. Plant Mol Biol 12: 595–596

    Article  CAS  Google Scholar 

  • Payne G., Ahl P., Moyer M., Harper A., Beck J., Meins F. Jr, Ryals J. (1990a) Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco. Proc Natl Acad Sci USA 87: 98–102

    Article  PubMed  CAS  Google Scholar 

  • Payne G., Ward E., Gaffney T., Ahl-Goy P., Moyer M., Harper A., Meins F. Jr, Ryals J. (1990b) Evidence for three structural classes of ß-1,3-glucanase in tobacco. Plant Mol Biol 15: 797–808

    Article  PubMed  CAS  Google Scholar 

  • Pegg G.F. (1977) Glucanohydrolases of higher plants: a possible defence mechanism against parasitic fungi. In: Solheim B., Raa J. (eds) Cell wall biochemistry related to specificity in host-pathogen relationships. Universitetsforlaget, Tromso, pp 305–345

    Google Scholar 

  • Pfeffer S., Ullrich A. (1985) Is the precursor a receptor? Nature 313: 184

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E., Bernatzky R., Tanksley S.D., Cashmore A.R. (1986) Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-I,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 83: 3880–3884

    Article  PubMed  CAS  Google Scholar 

  • Pierpoint W.S., Jackson P.J., Evans R.M. (1990) The presence of a thaumatin-like protein, a chitinase and a glucanase among the pathogenesis-related proteins of potato (Solanum tuberosum). Physiol Mol Plant Pathol 36: 325–338

    Article  CAS  Google Scholar 

  • Powning R.F., Irzykiewicz H. (1965) Studies on the chitinase system in bean and other seeds. Comp Biochem Physiol 14: 127–133

    Article  PubMed  CAS  Google Scholar 

  • Raikhel N.V., Wilkins T.A. (1987) Isolation and characterization of a CON A clone encoding wheat germ agglutinin. Proc Natl Acad Sci USA 84: 6745–6749

    Article  PubMed  CAS  Google Scholar 

  • Roby D., Esquerre-Tugaye M.-T. (1987) Induction of chitinases and translatable mRNA for these enzymes in melon plants infected with Colletotrichum lagenarium. Plant Sci 52: 175–185

    Article  CAS  Google Scholar 

  • Roby D., Broglie K., Cressman R., Biddle P., Chet I., Broglie R. (1990) Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999–1007

    PubMed  Google Scholar 

  • Roggen H.P., Stanley R.G. (1969) Cell-wall hydrolysing enzymes in wall formation as measured by pollen-tube extension. Planta 84: 295–303

    Article  CAS  Google Scholar 

  • Samac D.A., Hironaka C.M., Yallaly P.E., Shah D.M. (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93: 907–914

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A., Mauch F., Vögeli U., Boller T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367

    Article  CAS  Google Scholar 

  • Shinshi H., Kato K. (I983a) Physical and chemical properties of ß-1,3-glucanase from cultured tobacco cells. Agricult Biol Chem 47: 1455–1460

    Google Scholar 

  • Shinshi H., Kato K. (1983b) In vitro synthesis of a larger precursor of tobacco ß-1,3-glucanase. Agricult Biol Chem 47: 1275–1280

    Article  CAS  Google Scholar 

  • Shinshi H., Mohnen D., Meins F. Jr (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 64: 89–93

    Article  Google Scholar 

  • Shinshi H., Wenzler H., Neuhaus J.-M., Felix G., Hofsteenge J., Meins F. Jr (1988) Evidence for N-and C-terminal processing of a plant defense-related enzyme: primary structure of tobacco prepro-ß-1,3-glucanase. Proc Natl Acad Sci USA 85: 5541–5545

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H., Neuhaus J.-M., Ryals J., Meins F Jr (1990) Structure of a tobacco endochitinase gene: evidence that different chitinases genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol 14: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Simmons C.R., Litts J.C., Huang N., Rodriguez R.L. (1992) Structure of a rice ß-1,3-glucanase gene regulated by ethylene, cytokinin, wounding salicylic acid and fungal elicitors. Plant Mol Biol 18: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Sperisen C., Ryals J., Meins F Jr (1991) Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco ß-1,3-glucanase gene family. Proc Natl Acad Sci USA 88: 1820–1824

    Article  PubMed  CAS  Google Scholar 

  • Stanford A., Bevan M., Northcote D. (1989) Differential expression within a family of novel wound induced genes in potato. Mol Gen Genet 215: 200–208

    Article  PubMed  CAS  Google Scholar 

  • Strobaek S., Gibbons G.C., Haslett B., Boulter D., Wildman S.G. (1976) On the nature of the polymorphism of the small subunit of ribulose-1,5-diphosphate carboxylase (EC 4.1.1.39) in the amphidiploid Nicotiana tabacum. Carlsberg Res Comm 41: 335–343

    Article  Google Scholar 

  • Swegle M., Huang J.-K., Lee G., Muthukrishnan S. (1989) Identification of an endochitinase cDNA clone from barley aleurone cells. Plant Mol Biol 12: 403–412

    Article  CAS  Google Scholar 

  • Takeuchi Y., Yoshikawa M., Takeba G., Tanaka K., Shibata D., Horino O. (1990) Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, ß-1,3-endoglucanase, in soybean. Plant Physiol 93: 673–682

    Article  PubMed  CAS  Google Scholar 

  • Tata S.J., Beintema J.J., Balabaskaran S. (1983) The lysozyme of Hevea brasiliensis latex: isolation, purification, enzyme kinetics and a partial amino-acid sequence. J Rubber Res Inst Malaysia 31: 35–48

    CAS  Google Scholar 

  • Thornton J.M. (1981) Disulfide bridges in globular proteins. J Mol Biol 151: 261–288

    Article  PubMed  CAS  Google Scholar 

  • Vad K., Mikkelsen J.D., Collinge D.B. (1991) Induction, purification and characterization of chitinase isolated from pea leaves inoculated with Ascochyta pisi. Planta 184: 24–29

    Article  CAS  Google Scholar 

  • van Buuren M., Neuhaus J.-M., Shinshi H., Ryals J., Meins F. Jr (1992) The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. Mol Gen Genet 232: 460–469

    Article  PubMed  Google Scholar 

  • van den Bulke M., Bauw G., Castresana C., van Montagu M., Vandekerckhove J. (1989)Characterization of vacuolar and extracellular ß(1,3)-glucanases of tobacco: Evidence for a strictly compartmentalized plant defense system. Proc Natl Acad Sci USA86: 2673–2677

    Article  Google Scholar 

  • van Loon L.C., van Kammen A. (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199–211

    Article  Google Scholar 

  • van Parijs J., Broekaert W.F., Goldstein I.J., Peumans W.J. (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183: 258–264

    Article  Google Scholar 

  • Vaucheret H., Kronenberger J., Rouzé P., Caboche M. (1989) Complete nucleotide sequence of the two homeologous tobacco nitrate reductase genes. Plant Mol Biol 12: 597–600

    Article  CAS  Google Scholar 

  • Verburg J.G., Huynh Q.K. (1991) Purification and characterization of an antifungal chitinase from Arabidopsis thaliana. Plant Physiol 95: 450–455

    Article  PubMed  CAS  Google Scholar 

  • Vögeli-Lange R., Hansen-Gehri A., Boller T., Meins F. Jr(1988) Induction of the defenserelated glucanohydrolases, ß-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci 54: 171–176

    Article  Google Scholar 

  • Vögeli-Lange R., Hart C., Nagy F., Meins F. Jr (1991) Regulation of the ß-1,3-glucanase B promoter in transgenic tobacco. In: Hallick R.B. (ed) Program and abstracts of the Third International Congress of Plant Molecular Biology, University of Arizona, Tucson, Abstract 288

    Google Scholar 

  • Vögeli U., Meins F Jr. Boller T. (1988) Co-ordinated regulation of chitinase and ß-1,3-glucanase in bean leaves. Planta 174: 364–372

    Article  Google Scholar 

  • Ward E.R., Payne G.B., Moyer M.B., Williams S.C., Dincher S.S., Sharkey K., Beck J., Taylor H.T., Ahl-Goy P., Meins F. Jr, Ryals J. (1991) Differential regulation of ß-1,3-glucanase mRNAS in response to pathogen infection. Plant Physiol 96:390–397

    Article  PubMed  CAS  Google Scholar 

  • Waterkeyn L. (1967) Sur l’existence d’un “stade callosique,” presente par la paroi cellulaire, au cours de la cytokinese. C R Acad Sci Paris 265: 1792–1794

    Google Scholar 

  • Wessels J.G.H., Sietsma J.H. (1981) Fungal cell walls: a survey. In: Tanner W., Loewus F.A. (eds)Plant carbohydratcs II. Springer. Berlin Heidelberg New York Tokyo, pp 352–394 [Pirson A., Zimmermann M.H. (eds) Encyclopedia of plant physiology, NS, vol 13B]

    Google Scholar 

  • Wilkins T., Raikhel N. (1989) Expression of rice lectin is governed by two temporally and statically regulated mR NA in developing embryos. Plant Cell 1: 541–549

    PubMed  CAS  Google Scholar 

  • Witte B., Beerhues L., Hahlbrock K., Kombrink E. (1990) Differential expression and localization of chitinases and 1,3-ß-glucanase in potato. In: Göttfert M., Hennecke H., Paul H. (eds) Abstracts of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions. Eidgenossische Technische Höchschule, Zürich, p 218

    Google Scholar 

  • Wright C.S., Gavilines F., Peterson D.L. (1984) Primary structure of wheat germ agglutinin isolectin 2. Peptide order deduced from X-ray structure. Biochemistry 23: 280–287

    Article  PubMed  CAS  Google Scholar 

  • Wright C.S., Raikhel N.V. (1989) Sequence variability in three wheat germ agglutinin isolectins: products of multiple genes in polyploid wheat. J Mol Evol 28: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q., Lamb C.J. (1991) Isolation and characterization of a rice gene encoding a basic chitinase. Mol Gen Genet 226: 289–296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Meins, F., Sperisen, C., Neuhaus, JM., Ryals, J. (1992). The Primary Structure of Plant Pathogenesis-related Glucanohydrolases and Their Genes. In: Boller, T., Meins, F. (eds) Genes Involved in Plant Defense. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6684-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6684-0_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7380-0

  • Online ISBN: 978-3-7091-6684-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics