Skip to main content
Log in

Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The endochitinases (E.C. 3.2.1.14, chitinase) are a structurally diverse group of enzymes believed to be important in the biochemical defense of plants against potential pathogens. The gene for a chitinase of Nicotiana tabacum L. cv. Havana 425 has been cloned and sequenced. The major transcription start is 11 bp upstream of the ATG codon and 28 bp downstream of the TATA box. The gene contains two introns and encodes a basic chitinase of 329 amino acids with a 23 amino acid N-terminal signal peptide followed by a 43 amino acid, cysteine-rich domain, which is linked by a hinge region to the main structure of the enzyme. This gene appears to be expressed because the exons are identical to the coding sequence of a cDNA which was isolated. Comparison of chitinase amino acid sequences from different plants indicates there are at least three classes of these enzymes: class I, basic chitinases with an N-terminal cysteine-rich domain and a highly conserved main structure; class II, chitinases similar to the main structure of class I chitinases but lacking the cysteine-rich domain; and, class III, chitinases with conserved sequences different from those of the class I and II enzymes. The sequences encoding the cysteine-rich domain in class I chitinases are flanked by 9–10 bp imperfect direct repeats suggesting that these domains arose from a common ancestral gene and were introduced into genes for class I enzymes by transposition events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Boller T: Ethylene and the regulation of antifungal hydrolases in plants. Oxford Surveys Plant Mol Cell Biol 5: 145–174 (1989).

    Google Scholar 

  2. Boller T: Hydrolytic enzymes in plant disease resistance. In: Kosuge T, Nester EW (eds) Plant-Microbe Interactions, vol. 2, pp. 385–413. Macmillan, New York (1987).

    Google Scholar 

  3. Breathnach R, Chambon P: Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383 (1981).

    Article  PubMed  Google Scholar 

  4. Broglie KE, Gaynor JJ, Broglie RM: Ethylene-regulated gene expression: Molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci USA 83: 6820–6824 (1986).

    PubMed  Google Scholar 

  5. Brown JWS: A catalogue of splice junctions and putative branch point sequences from plant introns. Nucl Acids Res 14: 9549–9559 (1986).

    PubMed  Google Scholar 

  6. Cornelissen BJC, Horowitz J, vanKan JAL, Goldberg RB, Bol JF: Structure of tobacco genes encoding pathogenesis related proteins from the PR-1 group. Nucl Acids Res 15: 6799–6811 (1987).

    PubMed  Google Scholar 

  7. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  8. Döring H-P, Starlinger P: Molecular genetics of transposable elements in plants. Annu Rev Genet 20: 175–200 (1986).

    PubMed  Google Scholar 

  9. Durand-Tardif M: Etude de l'induction, par l'ethephon, de l'expression du gène codant pour la chitinase chez la tomate et analyse de la structure de ce gène. Doctoral Dissertation, Université de Paris Sud, Paris (1986).

  10. Felix G: Hormonal regualtion of abundant polypeptides with β-1,3-glucanase and chitinase activity in tobacco. Doctoral Dissertation, Universität Basel, Basel (1984).

    Google Scholar 

  11. Gaynor JJ: Primary structure of an endochitinase mRNA from Solanum tuberosum. Nucl Acids Res 16: 5210 (1988).

    PubMed  Google Scholar 

  12. Gilbert W: Why genes in pieces? Nature 271: 501 (1978).

    PubMed  Google Scholar 

  13. Gilbert W: The exon theory of genes. Cold Spring Harbor Symp Quant Biol 52: 901–905 (1987).

    PubMed  Google Scholar 

  14. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Article  PubMed  Google Scholar 

  15. Goodspeed TH: The Genus Nicotiana. Chronica Botanica, Waltham, MA, USA (1954).

    Google Scholar 

  16. Gray JC, Kung SD, Wildman SG, Sheen SJ: Origin of Nicotiana tabacum L. detected by polypeptide composition of fraction I protein. Nature 252: 226–227 (1974).

    PubMed  Google Scholar 

  17. Gribskov M, Burgess RR: Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucl Acids Res 14: 6745–6763 (1986).

    PubMed  Google Scholar 

  18. Hooft van Huijsduijnen RAM, Kauffmann S, Brederode FT, Cornelissen BJC, Legrand M, Fritig B, Bol JF: Homology between chitinases that are induced by TMV infection of tobacco. Plant Mol Biol 9: 411–420 (1987).

    Google Scholar 

  19. Joshi CP: An inspection of the domain between putative TATA box and translational start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).

    PubMed  Google Scholar 

  20. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: complication and analysis. Nucl Acids Res 15: 9627–9640 (1987).

    PubMed  Google Scholar 

  21. Leah R, Mikkelsen J, Mundy J, Svendsen IB: Identification of a 28 000 Dalton endochitinase in barley endosperm. Carlsberg Res Comm 52: 31–37 (1987).

    Google Scholar 

  22. Legrand M, Kauffmann S, Geoffroy P, Fritig B: Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754 (1987).

    Google Scholar 

  23. Lucas J, Henschen A, Lottspeich F, Vögeli U, Boller T: Amino-terminal sequence of ethylene-induced bean leaf chitinase reveals similarities to sugar-binding domains of wheat germ agglutinin. FEBS Lett 193: 208–210 (1985).

    Article  Google Scholar 

  24. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    PubMed  Google Scholar 

  25. Maniatis T, Fritisch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  26. Meins F Jr, Ahl P: Induction of chitinase and β-1,3-glucanase in tobacco plants infected with Pseudomonas tabaci and Phytophthora parasitica var. nicotianae. Plant Sci 61: 155–161 (1989).

    Google Scholar 

  27. Métraux JP, Burkhart W, Moyer M, Dincher S, Middlesteadt W, Williams S, Payne G, Carnes M, Ryals J: Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci USA 86: 896–900 (1989).

    PubMed  Google Scholar 

  28. Mohnen D, Shinshi H, Felix G, Meins F Jr: Hormonal regulation of β-1,3-glucanase messenger RNA levels in cultured tobacco tissues. EMBO J 4: 1631–1635 (1985).

    Google Scholar 

  29. Pelham H: Activation of heat-shock genes in eukaryotes. Trends Genet 1: 31–35 (1985).

    Article  Google Scholar 

  30. Pfitzner UM, Pfitzner AJP, Goodman HM: DNA sequence analysis of a PR-1a gene from tobacco: Molecular relationship of heat shock and pathogen responses in plants. Mol Gen Genet 211: 290–295 (1988).

    Google Scholar 

  31. Powning RF, Irzykiewicz H: Studies on the chitinase system in bean and other seeds. Comp Biochem Physiol 14: 127–133 (1965).

    PubMed  Google Scholar 

  32. Ruskin B, Kainer AR, Maniatis T, Green MR: Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38: 317–331 (1984).

    Article  PubMed  Google Scholar 

  33. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  34. Shinshi H, Mohnen D, Meins F Jr: Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84: 89–93 (1987).

    Google Scholar 

  35. Shinshi H, Wenzler H, Neuhaus J-M, Felix G, Hofsteenge J, Meins F Jr: Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-β-1,3-glucanase. Proc Natl Acad Sci USA 85: 5541–5545 (1988).

    Google Scholar 

  36. Somssich IE, Schmelzer E, Kawalleck P, Hahlbrock K: Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol Gen Genet 213: 93–98 (1988).

    Article  PubMed  Google Scholar 

  37. Stanford A, Bevan M, Northcote D: Differential expression within a family of novel wound induced genes in potato. Mol Gen Genet 215: 200–208 (1989).

    PubMed  Google Scholar 

  38. Swegle M, Huang J-K, Lee G, Muthukrishnan S: Identification of an endochitinase cDNA clone from barely aleurone cells. Plant Mol Biol 12: 403–412 (1989).

    Article  Google Scholar 

  39. Vögeli-Lange R, Hansen-Gehri A, Boller T, Meins F Jr: Induction of the defense-related glucanohydrolases, β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci 54: 171–176 (1988).

    Google Scholar 

  40. VonHeijne G: Patterns of amino acids near signalsequence cleavage sites. Eur J Biochem 133: 17–21 (1983).

    PubMed  Google Scholar 

  41. Wright CS, Gavilines F, Peterson DL: Primary structure of wheat germ agglutinin isolectin 2. Peptide order deduced from X-ray structure. Biochemistry 23: 280–287 (1984).

    PubMed  Google Scholar 

  42. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinshi, H., Neuhaus, JM., Ryals, J. et al. Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol 14, 357–368 (1990). https://doi.org/10.1007/BF00028772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028772

Key words

Navigation