Skip to main content

Biotechnical Genetics of Antibiotic Biosynthesis

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Antibiotics are substances with low molecular weight which inhibit the growth of microorganisms at low concentrations. The term “low molecular weight substances” refers to molecules of at most a few thousand Dalton and does not include those complex proteins that also have antibacterial properties (Lancini and Parenti 1982). Antibiotics not only include antibacterial substances but also compounds with antifungal, antitumor, antiviral etc. activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham EP (1990) Selective reminiscences of (3-lactam antibiotics: early research on penicillin and cephalosporins. Bioessays 12: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Affenzeller K, Kubicek CP (1991) Evidence for a compartmentation of penicillin biosynthesis in a high-and a low-producing strain of Penicillium chrysogenum. J Gen Microbiol 137: 1653–1660

    Article  PubMed  CAS  Google Scholar 

  • Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46: 461–495

    Article  PubMed  CAS  Google Scholar 

  • Aharonowitz Y, Bergmeyer J, Cantoral JM, Cohen G, Demain A, Fink U, Kinghorn J, Kleinkauf H, MacCabe A, Palissa H, Pfeifer E, Schwecke T, van Liempt H, von Döhren H, Wolfe S, Zhang J (1993) S-(L-a-aminoadipyl)-L-cysteinyl-D-valine synthetase, the multi-enzyme integrating the four primary reactions in (3-lactam biosynthesis, as a model peptide synthetase. Biotechnology (NY) 11: 807–810

    Article  CAS  Google Scholar 

  • Alexander DC, Jensen SE (1998) Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180: 4068–4079

    PubMed  CAS  Google Scholar 

  • Alvarez E, Cantoral JM, Barredo JL, Diez B, Martin JF (1987) Purification to homogeneity and characterization of acylcoenzyme A:6-amino penicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother 31: 1675–1682

    Article  CAS  Google Scholar 

  • Alvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Diez B, Barredo JL, Martin JF (1993) The isopenicillin N acyltransferase of Penicillium chrysogenum has isopenicillin N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur J Biochem 215: 323–332

    Article  PubMed  CAS  Google Scholar 

  • Alvi KA, Reeves CD, Peterson J, Lein J (1995) Isolation and identification of a new cephem compound from Penicillium chrysogenum strains expressing deacetoxycephalosporin synthase activity. J Antibiot (Tokyo) 48: 338–340

    Article  CAS  Google Scholar 

  • Aplin RT, Baldwin JE, Cole SC, Sutherland JD, Tobin MB (1993a) On the production of alpha, betaheterodimeric acyl-coenzyme A:isopenicillin N-acyltransferase of Penicillium chrysogenum. Studies using a recombinant source. FEBS Lett 319: 166–170

    Google Scholar 

  • Aplin RT, Baldwin JE, Roach PL, Robinson CV, Schofield CJ. (1993b) Investigations into the post-translational modification and mechanism of isopenicillin N:acylCoA acyltransferase using electrospray mass spectrometry. Biochem J 294: 357–363

    PubMed  CAS  Google Scholar 

  • Arst HN Jr (1996) Regulation of gene expression by pH. In: Brambl R, Marzluf GA (eds) The Mycota III. Biochemistry and molecular biology. Springer, Berlin Heidelberg New York, pp 235–240

    Google Scholar 

  • Arst HN Jr, Scazzocchio C (1985) Formal genetic methodology of Aspergillus nidulans as applied to the study of control systems. In: Bennett JW, Lasure LL (eds) Gene manipulations in fungi. Academic Press, London, pp 309–343

    Google Scholar 

  • Bailey C,Arst HN Jr (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51: 573–577

    Article  Google Scholar 

  • Baldwin JE, Abraham EP (1988) The biosynthesis of penicillins and cephalosporins. Nat Prod Rep 5: 129–145

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JE, Adlington RM, Moroney SE, Field LD, Ting H-H (1984) Stepwise ring closure in penicillin biosynthesis. Initial ß-lactam formation. J Chem Soc Chem Commun 1984: 984–986

    Google Scholar 

  • Baldwin JE, Gagnon J, Ting H-H (1985) N-terminal amino acid sequence and some properties of isopenicillin-N synthetase from Cephalosporium acremonium. FEBS Lett 188: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JE, Bird JW, Field RA, O’Callaghan NM, Schofield CJ, Willis AC (1991) Isolation and partial characterization of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase. J Antibiot 44: 241–248

    Google Scholar 

  • Baldwin JE, Shiau C-Y, Byford MF, Schofield CJ (1994) Substrate specificity of S-(L-a-aminoadipyl)-Lcysteinyl-D-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products. Biochem J 301: 367372

    Google Scholar 

  • Barredo JL, Diez B, Alvarez E, Martin JF (1989a) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of P. chrysogenum. Curr Genet 16: 453–459

    Article  PubMed  CAS  Google Scholar 

  • Barredo JL, van Solingen P, Diez B, Alvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Veenstra AE, Martin JF (1989b) Cloning and characterization of the acyl-coenzyme A:6-amino-penicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 83: 291–300

    Article  PubMed  CAS  Google Scholar 

  • Behmer CJ, Demain AL (1983) Further studies on carbon catabolite regulation of ß-lactam antibiotic synthesis in Cephalosporium acremonium. Curr Microbiol 8: 107–114

    Article  CAS  Google Scholar 

  • Bennett JW, Bentley R (1989) What’s in a name? Microbial secondary metabolism. In: Neidleman SL (ed) Advances in applied microbiology, vol 34. Academic Press, London, pp 1–28

    Google Scholar 

  • Bhatnagar D, Yu J, Ehrlich KC (2002) Toxins of filamentous fungi. Chem Immunol 81: 167–206

    Article  PubMed  CAS  Google Scholar 

  • Borovok I, Landman O, Kreisberg-Zakarin R, Aharonowitz Y, Cohen G (1996) Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands. Biochemistry 35: 1981–1987

    CAS  Google Scholar 

  • Brakhage AA (1997) Molecular regulation of the penicillin biosynthesis in Aspergillus nidulans. FEMS Microbiol Lett 148: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Brakhage AA (1998) Molecular regulation of 3-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62: 547–585

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Turner G (1995) Biotechnical genetics of antibiotic biosynthesis. In: Kück U (ed) The Mycota II. Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 263–285

    Google Scholar 

  • Brakhage AA, van den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol 177: 2781–2788

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174: 3789–3799

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Browne P, Turner G (1994) Analysis of the regulation of the penicillin biosynthesis genes of Aspergillus nidulans by targeted disruption of the acvA gene. Mol Gen Genet 242: 57–64

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ (1999) HAP-like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Brotzu G (1948) Ricerche su di un nuovo antibiotico. Lavori dell’Instituto d’Igiene di Cagliari 1948, pp 1–11

    Google Scholar 

  • Brunner R, Röhr M (1975) Phenylacyl:coenzyme A ligase. Methods Enzymol 43: 476–481

    Article  PubMed  CAS  Google Scholar 

  • Bunnel CA, Luke WD, Perry FM Jr (1986) Industrial manufacture of cephalosporins. In: Queener SF, Webber JA, Queener SW (eds) (3-Lactam antibiotics for clinical use. Marcel, New York, pp 255–284

    Google Scholar 

  • Cantoral JM, Gutiérrez S, Fierro F, Gil-Espinosa S, van Liempt H, Martin JF (1993) Biochemical characterisation and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J Biol Chem 268: 737–744

    PubMed  CAS  Google Scholar 

  • Cantwell CA, Beckmann RJ, Dotzlaf RJ, Fisher DL, Skatrud PL, Yeh W-K, Queener SW (1990) Cloning and expression of a hybrid S. clavuligerus cefE gene in R chrysogenum. Curr Genet 17: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Cantwell C, Beckmann RJ, Whiteman P, Queener SW, Abraham EP (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond Ser B 248: 283–289

    Article  CAS  Google Scholar 

  • Carr LG, Skatrud PL, Scheetz ME II, Queener SW, Ingolia TD (1986) Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Caruso ML, Litzka O, Martic G, Lottspeich F, Brakhage AA (2002) A novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. J Mol Biol 323: 425–439

    Google Scholar 

  • Chiang TY, Marzluf GA (1994) DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing, and orientation of GATA core elements and their flanking sequences upon NIT2 binding. Biochemistry 33: 576–582

    Article  PubMed  CAS  Google Scholar 

  • Chu Y-W, Renno D, Saunders G (1995) Detection of a protein which binds specifically to the upstream region of the pcbAB gene in Penicillium chrysogenum. Curr Genet 27: 184–189

    Article  Google Scholar 

  • Clutterbuck PW, Lovell R, Raistrick R (1932) The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin–the antibacterial substance of Fleming. Biochem J 26: 1907–1918

    PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1993) Aspergillus nidulans,nuclear genes. In: O’Brien SJ (ed) Genetic maps, 6th edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 371384

    Google Scholar 

  • Cohen G, Shiffman D, Mevarech M, Aharonowitz Y (1990) Microbial isopenicillin N synthase genes: structure, function, diversity and evolution. Trends Biotechnol 8: 105–111

    CAS  Google Scholar 

  • Cohen G, Argaman A, Schreiber R, Mislovati M, Aharonowitz Y (1994) The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol 176: 973–984

    PubMed  CAS  Google Scholar 

  • Coque J-JR, Martin JF, Calzada JG, Liras P (1991) The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol Microbiol 5: 1125–1133

    Article  PubMed  CAS  Google Scholar 

  • Coque J-JR, Liras P, Martin JF (1993) Genes for a 13lactamase, a penicillin-binding protein and a trans-membrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. EMBO J 12: 631–639

    PubMed  CAS  Google Scholar 

  • Cortes J, Martin JF, Castro JM, Laiz L, Liras P (1987) Purification and characterization of a 2-oxoglutarate-linked ATP-independent deacetoxycephalosporin C synthase of Streptomyces lactamdurans. J Gen Microbiol 133: 3165–3174

    PubMed  CAS  Google Scholar 

  • Crawford L, Stepan AM, McAda PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology (NY) 13: 58–62

    Article  CAS  Google Scholar 

  • Demain AL (1957) Inhibition of penicillin formation by lysine. Arch Biochem Biophys 67: 244–245

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (1963) Synthesis of cephalosporin C by resting cells of Cephalosporium sp. Clin Med 70: 2045–2051

    PubMed  CAS  Google Scholar 

  • Demain AL, Kennel YM, Aharonowitz Y (1979) Carbon catabolite regulation of secondary metabolism. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: current state, future prospects, vol 29. Cambridge Univ Press, Cambridge, pp 163–185

    Google Scholar 

  • DeModena JA, Gutiérrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Biotechnology (NY) 11: 926–929

    Article  CAS  Google Scholar 

  • Diez BS, Gutierrez S, Barredo JL, van Solingen P, van der Voort LHM, Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the a-amino adipylcysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265: 16358–16365

    PubMed  CAS  Google Scholar 

  • Diez E, Alvaro J, Espeso EA, Rainbow L, Suarez T, Tilburn J, Arst HN Jr, Penalva MA (2002) Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21: 1350–1359

    Article  PubMed  CAS  Google Scholar 

  • Dotzlaf JE, Yeh W-K (1987) Copurification and characterization of deacetoxycephalosporin C synthase/hydroxylase from Cephalosporium acremonium. J Bacteriol 169: 1611–1618

    PubMed  CAS  Google Scholar 

  • Dotzlaf JE, Yeh W-K (1989) Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J Biol Chem 264: 10219–10227

    PubMed  CAS  Google Scholar 

  • Emery P, Durand B, Mach B, Reith W (1996) RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res 24: 803–807

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Penalva MA (1992) Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol 6: 1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Penalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271: 28825–28830

    CAS  Google Scholar 

  • Espeso EA, Tilburn J, Arst HN Jr, Penalva MA (1993) pH regulation is a major determinant in expression of a fungal biosynthetic gene. EMBO J 12: 3947–3956

    Google Scholar 

  • Espeso EA, Fernandez-Canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. FEMS Microbiol Lett 126: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Roncal T, Diez E, Rainbow L, Bignell E, Alvaro J, Suarez T, Denison SH, Tilburn J, Arst HN Jr, Penalva MA (2000) On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J 19:719–728; erratum: EMBO J 719: 2391

    Google Scholar 

  • Felix HR, Nüesch J, Wehrli W (1980) Investigation of the two final steps on the biosynthesis cephalosporin C using permeabilised cells of Cephalosporium acremonium. FEMS Microbiol Lett 8: 55–58

    Article  CAS  Google Scholar 

  • Feng B, Friedlin E, Marzluf GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60: 4432–4439

    PubMed  CAS  Google Scholar 

  • Feng B, Friedlin E, Marzluf GA (1995) Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes. Curr Genet 27: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Feng D-F, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94: 13028–13033

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Canon JM, Penalva MA (1995) Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol Gen Genet 246: 110–118

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Canon JM, Reglero A, Martinez-Blanco H, Luengo JM (1989) I. Uptake of phenylacetic acid by Penicillium chrysogenum Wis54–1255: A critical regulatory point in benzylpenicillin biosynthesis. J Antibiot 42: 1389–1409

    Google Scholar 

  • Fierro F, Barredo JL, Diez B, Gutiérrez S, Fernandez FJ, Martin JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92: 6200–6204

    Article  PubMed  CAS  Google Scholar 

  • Fierro F, Montenegro E, Gutiérrez S, Martin JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenza. Br J Exp Pathol 10: 226–236

    CAS  Google Scholar 

  • Fu YH, Marzluf GA (1990) nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA 87: 5331–5335

    Google Scholar 

  • Fujisawa Y, Kanzaki T (1975) Role of acetyl-CoA:deacetylcephalosporin C acetyltransferase in cephalosporin C biosynthesis in Cephalosporium acremonium. Agric Biol Chem 39: 2043–2048

    Article  CAS  Google Scholar 

  • Gouka RJ, van Hartingsveldt W, Bovenberg RA, van Zeijl CM, van den Hondel CA, van Gorcom RF (1993) Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker. Appl Microbiol Biotechnol 38: 514–519

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Keller G-A, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108: 1657–1664

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1992) Messenger RNA transcription and its control in Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae, vol 2. Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 49–98

    Google Scholar 

  • Gutiérrez S, Diez B, Montenegro E, Martin JF (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding a-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173: 2354–2365

    PubMed  Google Scholar 

  • Gutiérrez S, Velasco J, Fernandez FJ, Martin JF (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J Bacteriol 174: 3056–3064

    Google Scholar 

  • Haas H, Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Bauer B, Redl B, Stöffler G, Marzluf GA (1995) Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 27: 150–158

    Article  PubMed  CAS  Google Scholar 

  • Heatley NG (1990) Early work at Oxford on penicillin. Biochemist 12: 4–7

    Google Scholar 

  • Hersbach GJM, van der Beek CP, van Dijck PWM (1984) The penicillins: Properties, biosynthesis and fermentation. In: Vandamme EJ (ed) Biotechnology of industrial antibiotics. Dekker, New York, pp 45–140

    Google Scholar 

  • Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G a protein-dependent signaling pathway. EMBO J 16: 4916–4923

    Google Scholar 

  • Hilgendorf P, Heiser V, Diekmann H, Thoma M (1987) Constant dissolved oxygen concentrations in cephalosporin C fermentation: applicability of different controllers and effect on fermentation parameters. Appl Microbiol Biotechnol 27: 247–251

    Article  CAS  Google Scholar 

  • Hillenga DJ, Versantvoort HJM, van der Molen S, Driessen AJM, Konings WN (1995) Penicillium chrysogenum takes up the penicillin G precursor phenylacetic acid by passive diffusion. Appl Environm Microbiol 61: 2589–2595

    Google Scholar 

  • Hollander IJ, Shen VQ, Heim J, Demain AL, Wolfe S (1984) A pure enzyme catalyzing penicillin biosynthesis. Science 224: 610–612

    Article  PubMed  CAS  Google Scholar 

  • Hönlinger C, Kubicek CP (1989a) Metabolism and compartmentation of a-aminoadipic acid in penicillin-producing strains of Penicillium chrysogenum. Biochim Biophys Acta 993: 204–211

    Article  Google Scholar 

  • Hönlinger C, Kubicek CP (1989b) Regulation of ö-(L-aaminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the a-aminoadipate pool size. FEMS Microbiol Lett 65: 71–76

    Google Scholar 

  • Hynes MJ, Kelly J (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon source metabolism. Mol Gen Genet 150: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Ingolia TD, Queener SW (1989) 3-Lactam biosynthetic genes. Med Res Rev 9: 245–264

    Google Scholar 

  • Jayatilake S, Huddleston JA, Abraham EP (1981) Conversion of isopenicillin N into penicillin N in cell-free extracts of Cephalosporium acremonium. Biochem J 194: 645–647

    PubMed  CAS  Google Scholar 

  • Jekosch K, Kück U (2000a) Glucose-dependent transcriptional expression of the crei gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37: 388395

    Google Scholar 

  • Jekosch K, Kück U (2000b) Loss of glucose repression in an Acremonium chrysogenum ß-lactam producer strain and its restoration by multiple copies of the crei gene. Appl Microbiol Biotechnol 54: 556–563

    Article  PubMed  CAS  Google Scholar 

  • Jensen SE, Demain AL (1995) 13-Lactams. In: Vining LC, Stuttard C (eds) Genetics and biochemistry of antibiotic production. Butterworth-Heinemann, Newton, Mass, pp 239–268

    Google Scholar 

  • Jensen SE, Westlake DWS, Wolfe S (1983) Partial purification and characterization of isopenicillin N epimerase activity from Streptomyces clavuligerus. Can J Microbiol 29: 1526–1531

    Article  PubMed  CAS  Google Scholar 

  • Jensen SE, Westlake DWS, Wolfe S (1985) Deacetoxycephalosporin C synthetase and deacetoxycephalosporin C hydroxylase are two separate enzymes in Streptomyces clavuligerus. J Antibiot (Tokyo) 38: 263–265

    Article  CAS  Google Scholar 

  • Jorgensen HS, Nielsen J, Villadsen J, Mollgaard H (1995) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol Bioeng 46: 117–131

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Aoyama A, Naruse F, Kobayashi T, Tsukagoshi N (1997) An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol Gen Genet 254: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Aoyama A, Naruse F, Tateyama Y, Hayashi K, Miyazaki M, Papagiannopoulos P, Davis MA, Hynes MJ, Kobayashi T, Tsukagoshi N (1998) The Aspergillus nidulans CCAAT-binding factor, AnCP/AnCF, is a heteromeric protein analogous to the HAP complex of Saccharomyces cerevisiae. Mol Gen Genet 257: 404–411

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Naruse F, Kobayashi T, Tsukagoshi N (2001) No factors except for the hap complex increase the Takaamylase A gene expression by binding to the CCAAT sequence in the promoter region. Biosci Biotechnol Biochem 65: 2340–2342

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, Turner G (1996) S-(L-a-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253: 189–197

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Izawa M, Sumino Y (1996a) Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl Microbiol Biotechnol 44: 589–596

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Miyashita H, Sumino Y (1996b) Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl Microbiol Biotechnol 45: 490–501

    PubMed  CAS  Google Scholar 

  • Kogekar R, Deshpande VD (1982) Biosynthesis of penicillin in vitro. Purification and properties of phenyl/ phenoxyacetic acid activating enzyme. Indian J Biochem Biophys 19: 257–261

    Google Scholar 

  • Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70: 465–473

    Article  PubMed  CAS  Google Scholar 

  • Kolar M, Holzmann K, Weber G, Leitner E, Schwab H (1991) Molecular characterization and functional analysis in Aspergillus nidulans of the 5’-region of the Penicillium chrysogenum isopenicillin N synthetase gene. J Biotechnol 17: 67–80

    Article  CAS  Google Scholar 

  • Konomi T, Herchen S, Baldwin JE, Yoshida M, Hunt NA, Demain AL (1979) Cell-free conversion of S-(L-aaminoadipyl)-L-cysteinyl-D-valine into antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. Biochem J 184: 427–430

    PubMed  CAS  Google Scholar 

  • Kosalkova K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martin JF (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275: 2423–2430

    Article  PubMed  CAS  Google Scholar 

  • Kovacevic S, Miller JR (1991) Cloning and sequencing of the 13-lactam hydroxylase gene (cefx) from Streptomyces clavuligerus: gene duplication may have led to separate hydroxylase and expandase activities in the actinomycetes. J Bacteriol 173: 398–400

    PubMed  CAS  Google Scholar 

  • Kovacevic S, Weigel BJ, Tobin MB, Ingolia TD, Miller JR (1989) Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthase. J Bacteriol 171: 754–760

    PubMed  CAS  Google Scholar 

  • Kovacevic S, Tobin MB, Miller JR (1990) The 13-lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus. J Bacteriol 172: 3952–3958

    PubMed  CAS  Google Scholar 

  • Kück U, Walz M, Mohr G, Mracek M (1989) The 5’-sequence of the isopenicillin N-synthetase gene (pcbC) from Cephalosporium acremonium directs the expression of the prokaryotic hygromycin B phosphotransferase gene (hph) in Aspergillus niger. Appl Microbiol Biotechnol 31: 358–365

    Article  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Benett CF, Silbey S, Davis RW, Arst HN Jr (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9: 1355–1364

    Google Scholar 

  • Kupka J, Shen Y-Q, Wolfe S, Demain AL (1983) Partial purification and properties of the a-ketoglutaratelinked ring expansion enzyme of (3-lactam biosynthesis. FEMS Microbiol Lett 16: 1–6

    CAS  Google Scholar 

  • Lancini G, Parenti F (1982) Antibiotics. An integrated view. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Landan G, Cohen G, Aharonowitz Y, Shuali Y, Graur D, Shiffman D (1990) Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. Mol Biol Evol 7: 399–406

    CAS  Google Scholar 

  • Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78: 399–405

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Lloyd MD, Harlos K, Clifton IJ, Baldwin JE, Schofield CJ (2001) Kinetic and crystallographic studies on deacetoxycephalosporin C synthase ( DAOCS ). J Mol Biol 308: 937–948

    Google Scholar 

  • Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP (1993) Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 268: 665–671

    PubMed  CAS  Google Scholar 

  • Li W-H, Luo C-C, Wu C-I (1985) Evolution of DNA sequences. In: Maclntyre (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 1–94

    Google Scholar 

  • Lipscomb SJ, Lee HJ, Mukherji M, Baldwin JE, Schofield CJ, Lloyd MD (2002) The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase. Eur J Biochem 269: 2735–2739

    Article  PubMed  CAS  Google Scholar 

  • Littlejohn TG, Hynes MJ (1992) Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Mol Gen Genet 235: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Litzka O, Then Bergh K, Brakhage AA (1995) Analysis of the regulation of Aspergillus nidulans penicillin biosynthesis gene aat (penDE) encoding acyl coenzyme A:6-aminopenicillanic acid acyltransferase. Mol Gen Genet 249: 557–569

    Article  PubMed  CAS  Google Scholar 

  • Litzka O, Then Bergh K, Brakhage AA (1996) The Aspergillus nidulans penicillin biosynthesis gene aat (penDE) is controlled by a CCAAT containing DNA element. Eur J Biochem 238: 675–682

    Article  PubMed  CAS  Google Scholar 

  • Litzka O, Papagiannopoulos P, Davis MA, Hynes MJ, Brakhage AA (1998) The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur J Biochem 251: 758–767

    Article  PubMed  CAS  Google Scholar 

  • Luengo JM (1995) Enzymatic synthesis of hydrophobic penicillins. J Antibiot (Tokyo) 648: 1195–1212

    Google Scholar 

  • MacCabe AP, Riach MBR, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9: 279–287

    Google Scholar 

  • MacCabe AP, van Liempt H, Palissa H, Unkles SE, Riach MBR, Pfeifer E, von Döhren H, Kinghorn JR (1991) S-(L-a-Aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans - molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J Biol Chem 266: 12646–12654

    PubMed  CAS  Google Scholar 

  • MacCabe AP, van den Hombergh JPTW, Tilburn J, Arst HN Jr, Visser J (1996) Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Mol Gen Genet 250: 367–374

    PubMed  CAS  Google Scholar 

  • Macdonald KD, Holt G (1976) Genetics of biosynthesis and overproduction of penicillin. Sci Prog 63: 547–573

    PubMed  CAS  Google Scholar 

  • Malpartida F, Hopwood DA (1986) Physical and genetic characterization of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205: 66–73

    Article  PubMed  CAS  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97: 2651–2673

    Article  PubMed  CAS  Google Scholar 

  • Martin JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182: 2355–2362

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43: 173–206

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Gutiérrez S, Demain AL (1997) 13-Lactams. In: Anke T (ed) Fungal biotechnology. Antibiotics. Chapman and Hall, Weinheim, pp 91–127

    Google Scholar 

  • Martin-Zanca DM, Martin JF (1983) Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J Antibiot (Tokyo) 36: 700–708

    Article  CAS  Google Scholar 

  • Martinez-Blanco H, Reglero A, Fernandez-Valverde M, Ferrero MA, Moreno MA, Penalva MA, Luengo JM (1992) Isolation and characterization of the acetylCoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. J Biol Chem 267: 5474–5481

    Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61: 17–32

    PubMed  CAS  Google Scholar 

  • Mathison L, Soliday C, Stepan T, Aldrich T, Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet 23: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S, Komatsu K-I (1992a) Cloning and disruption of the cefG gene encoding acetyl coenzyme A:deacetylcephalosporin C 0-acetyltransferase from Acremonium chrysogenum. Biochem Biophys Res Commun 186: 40–46

    Article  PubMed  CAS  Google Scholar 

  • Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S, Komatsu K-I (1992b) Molecular cloning of acetyl coenzyme A:deacetylcephalosporin C Oacetyltransferase cDNA from Acremonium chrysogenum: Sequence and expression of catalytic activity in yeast. Biochem Biophys Res Commun 182: 9951001

    Google Scholar 

  • Matsumoto K (1993) Production of 6-APA, 7-ACA and 7ADCA by immobilised penicillin and cephalosporin amidases. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilised biocatalysts. Dekker, New York, pp 67–88

    Google Scholar 

  • Matsumura M, Imanaka T, Yoshida T, Taguchi H (1978) Effect of glucose and methionine consumption rates on cephalosporin C production by Cephalosporium acremonium. J Ferment Technol 56: 345–353

    CAS  Google Scholar 

  • McNabb DS, Xing Y, Guarente L (1995) Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Menne S, Walz M, Kück U (1994) Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl Microbiol Biotechnol 42: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Minambres B, Martinez-Blanco H, Olivera ER, Garcia B, Diez B, Barredo JL, Moreno MA, Schleissner C, Salto F, Luengo JM (1996) Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 271: 33531–33538

    Article  PubMed  CAS  Google Scholar 

  • Mingot JM, Penalva MA, Fernandez-Canon JM (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem 274: 14545–14550

    Article  PubMed  CAS  Google Scholar 

  • Mingot JM, Espeso EA, Diez E, Penalva MA (2001) Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol Cell Biol 21: 1688–1699

    Article  PubMed  CAS  Google Scholar 

  • Montenegro E, Barredo JL, Gutierrez S, Diez B, Alvarez E, Martin JF (1990) Cloning, characterization of the acyl-CoA:6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Mol Gen Genet 221: 322–330

    CAS  Google Scholar 

  • Mootz HD, Marahiel MA (1999) Design and application of multimodular peptide synthetases. Curr Opin Biotechnol 10: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Müller WH, van der Krift TP, Krouwer AJJ, Wösten HAB, van der Voort LHM, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10: 489–495

    PubMed  Google Scholar 

  • Müller WH, Bovenberg RAL, Groothuis MH, Kattevilder F, Smaal EB, van der Voort LHM, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116: 210–213

    Article  PubMed  Google Scholar 

  • Nagata O, Takashima T, Tanaka M, Tsukagoshi N (1993) Aspergillus nidulans nuclear proteins bind to a CCAAT element and the adjacent upstream sequence in the promoter region of the starch-inducible Taka-amylase A gene. Mol Gen Genet 237: 251–260

    Google Scholar 

  • Newbert RW, Barton B, Greaves P, Harper J, Turner G (1997) Analysis of a commercially improved Penicillium chrysogenum strain series: Involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J Ind Microbiol Biotechnol 19: 18–27

    Google Scholar 

  • Nielsen J (1995) Physiological engineering aspects of Peni- cillium chrysogenum. Polyteknisk Forlag, Denmark

    Google Scholar 

  • Nüesch J, Heim J, Treichler H-J (1987) The biosynthesis of sulfur-containing (3-lactam antibiotics. Annu Rev Microbiol 41: 51–75

    Article  PubMed  Google Scholar 

  • Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst HN Jr, Penalva MA (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9: 1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Pang CP, Chakravarti B, Adlington RM, Ting H-H, White RL, Jayatilake GS, Baldwin JE, Abraham EP (1984) Purification of isopenicillin N synthetase. Biochem J 222: 789–795

    CAS  Google Scholar 

  • Papagiannopoulos P, Adrianopoulos A, Sharp JA, Davis MA, Hynes MJ (1996) The hapC gene of Aspergillus nidulans is involved in the expression of CCAATcontaining promoters. Mol Gen Genet 251: 412–421

    PubMed  CAS  Google Scholar 

  • Penalva MA, Vian A, Patino C, Perez-Aranda A, Ramon D (1989) Molecular biology of penicillin production in Aspergillus nidulans. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 256–261

    Google Scholar 

  • Penalva MA, Moya A, Dopazo J, Ramon D (1990) Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proc R Soc Lond B Biol Sci 241: 164–169

    Article  CAS  Google Scholar 

  • Pérez-Esteban B, Orejas M, Gómez-Pardo E, Penalva MA (1993) Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol Microbiol 9: 881–895

    Google Scholar 

  • Pérez-Esteban B, Gómez-Pardo E, Penalva MA (1995) A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway. J Bacteriol 177: 6069–6076

    PubMed  Google Scholar 

  • Perry D, Abraham EP, Baldwin JE (1988) Factors affecting the isopenicillin N synthetase reaction. Biochem J 255: 345–351

    CAS  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5: 141–238

    Article  PubMed  CAS  Google Scholar 

  • Queener SW (1990) Molecular biology of penicillin and cephalosporin biosynthesis. Antimicrob Agents Chemother 34: 943–948

    Article  PubMed  CAS  Google Scholar 

  • Queener SW, Neuss N (1982) Biosynthesis of (3-lactam antibiotics. In: Morin RB, Gorman M (eds) Chemistry and biology of 13-lactam antibiotics, vol 3. Academic Press, London, pp 1–81

    Google Scholar 

  • Ramon D, Carramolino L, Patino C, Sanchez F, Penalva MA (1987) Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the (3-lactam ring in Aspergillus nidulans. Gene 57: 171–181

    Article  PubMed  CAS  Google Scholar 

  • Renno DV, Saunders G, Bull AT, Holt G (1992) Transcript analysis of penicillin genes from Penicillium chrysogenum. Curr Genet 21: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Revilla G, Lopez-Nieto MJ, Luengo JM, Martin JF (1984) Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J Antibiot (Tokyo) 37: 781–789

    Article  CAS  Google Scholar 

  • Revilla G, Ramos FR, Lopez-Nieto MJ, Alvarez E, Martin JF (1986) Glucose represses formation of ö-(L-a-Aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase, but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol 168: 947–952

    PubMed  CAS  Google Scholar 

  • Richardson IB, Katz ME, Hynes MJ (1992) Molecular characterization of the lam locus and sequences involved in the regulation of the AmdR protein of Aspergillus nidulans. Mol Cell Biol 12: 337–346

    PubMed  CAS  Google Scholar 

  • Roach PL, Clifton IJ, Fülöp V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375: 700–704

    CAS  Google Scholar 

  • Roach PL, Clifton IJ, Hensgens CMH, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387: 827–830

    CAS  Google Scholar 

  • Rodriguez-Saiz M, Barredo JL, Moreno MA, FernândezCanón JM, Penalva MA, Diez B (2001) Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. Bacteriol 183: 5465–5471

    Article  CAS  Google Scholar 

  • Rossi A, Arst HN Jr (1990) Mutants of Aspergillus nidulans able to grow at extremely acidic pH acidify the medium less than wild type when grown at more moderate pH. FEMS Microbiol Lett 66: 51–53

    Article  CAS  Google Scholar 

  • Samson SM, Belagaje R, Blankenship DT, Chapman JL, Perry D, Skatrud PL, van Frank RM, Abraham EP, Baldwin JE, Queener SW, Ingolia TD (1985) Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Samson SM, Dotzlaf JE, Slisz ML, Becker GW, van Frank RM, Veal LE, Yeh W-K, Miller JR, Queener SW, Ingolia TD (1987) Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Biotechnology (NY) 5: 1207–1214

    Article  CAS  Google Scholar 

  • Sanchez S, Flores ME, Demain AL (1988) Nitrogen regulation of penicillin and cephalosporin fermentations. In: Sanchez-Esquival S (ed) Nitrogen source control of microbial processes. CRC Press, Boca Raton, pp 121–136

    Google Scholar 

  • Scheidegger A, Küenzi MT, Nüesch J (1984) Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of 3-lactams in Cephalosporium acremonium. J Antibiot (Tokyo) 37: 522–531

    Article  CAS  Google Scholar 

  • Schlumbohm W, Stein T, Ullrich C, Vater J, Krause M, Marahiel MA, Kruft V, Wittmann-Liebold B (1991) An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem 266: 23135–23141

    PubMed  CAS  Google Scholar 

  • Schmitt EK, Kück U (2000) The fungal CPCR1 protein, which binds specifically to (3-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem 275: 9348–9357

    Article  PubMed  CAS  Google Scholar 

  • Schmitt EK, Kempken R, Kück U (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genom 265: 508–518

    Article  CAS  Google Scholar 

  • Schwecke T, Aharonowitz Y, Palissa H, von Döhren H, Kleinkauf H, van Liempt H (1992) Enzymatic characterisation of the multifunctional enzyme ö-(L-aaminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. Eur J Biochem 205: 687–694

    Article  PubMed  CAS  Google Scholar 

  • Seno ET, Baltz RH (1989) Structural organization and regulation of antibiotic biosynthesis and resistance genes in Actinomycetes. In: Shapiro S (ed) Regulation of secondary metabolism in Actinomycetes. CRC Press, Boca Raton, pp 1–48

    Google Scholar 

  • Shah AJ, Tilburn J, Adlard MW, Arst HN Jr (1991) pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol Lett 77: 209–212

    Google Scholar 

  • Shen Y-Q, Heim J, Solomon NA, Wolfe S, Demain AL (1984) Repression of P-lactam production in Cephalosporium acremonium by nitrogen sources. J Antibiot (Tokyo) 37: 503–511

    Article  CAS  Google Scholar 

  • Skatrud PL (1991) Molecular biology of the 13-lactamproducing fungi. In: Bennett JW, Lasure LL (eds) More gene manipulations in fungi. Academic Press, New York, pp 364–395

    Chapter  Google Scholar 

  • Skatrud PL, Queener SW (1989) An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 79: 331–338

    Article  Google Scholar 

  • Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Biotechnology (NY) 7: 477–485

    Article  CAS  Google Scholar 

  • Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216: 492–497

    Article  PubMed  CAS  Google Scholar 

  • Smith DJ, Burnham MRK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990a) ß-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9: 741–747

    PubMed  CAS  Google Scholar 

  • Smith DJ, Earl AJ, Turner G (1990b) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J 9: 2743–2750

    PubMed  CAS  Google Scholar 

  • Smith MW, Feng D-F, Doolittle RF (1992) Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci 17: 489–493

    Article  PubMed  CAS  Google Scholar 

  • Soltero FV, Johnson MJ (1952) The effect of the carbohydrate nutrition on penicillin production by Penicillium chrysogenum Q-176. Appl Microbiol 1: 52–57

    Google Scholar 

  • Steidl S, Papagiannopoulos P, Litzka O, Andrianopoulos A, Davis MA, Brakhage AA, Hynes MJ (1999) AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol Cell Biol 19: 99–106

    PubMed  CAS  Google Scholar 

  • Steidl S, Hynes MJ, Brakhage AA (2001) The Aspergillus nidulans multimeric CCAAT binding complex AnCf is negatively autoregulated via its hapB subunit gene. J Mol Biol 306: 643–653

    Article  PubMed  CAS  Google Scholar 

  • Stein T, Vater J, Kruft V, Wittmann-Liebold B, Franke P, Panico M, McDowell R, Morris HR (1994) Detection of 4’-phosphopantetheine at the thioester binding site for L-valine of gramicidin S synthetase 2. FEBS Lett 340: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Stein T, Vater J, Kruft V, Otto A, Wittmann-Liebold B, Franke P, Panico M, McDowell R, Morris HR (1996) The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 271: 15428–15435

    Article  PubMed  CAS  Google Scholar 

  • Suarez T, Penalva MA (1996) Characterisation of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20: 529–540

    Article  PubMed  CAS  Google Scholar 

  • Swartz RW (1985) Penicillins. In: Blanch HW, Drew S, Wang DIC (eds) Comprehensive biotechnology. The principles, applications and regulations of biotechnology in industry, agriculture and medicine, vol 3. The practice of biotechnology: current commodity products. Pergamon Press, Oxford, pp 7–47

    Google Scholar 

  • Tag A, Hicks J, Garifullina G, Ake C Jr, Phillips TD, Beremand M, Keller N (2000) G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol 38: 658–665

    Article  PubMed  CAS  Google Scholar 

  • Theilgaard HB, Kristiansen KN, Henriksen CM, Nielsen J (1997) Purification and characterization of S-(L-a-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum. Biochem J 327: 185–191

    PubMed  CAS  Google Scholar 

  • Theilgaard HB, van Den Berg M, Mulder C, Bovenberg R, Nielsen J (2001) Quantitative analysis of Penicillium chrysogenum Wis54–1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Then Bergh K, Brakhage AA (1998) Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol 64: 843–849

    CAS  Google Scholar 

  • Then Bergh K, Litzka O, Brakhage AA (1996) Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol 178: 3908–3916

    PubMed  CAS  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidic-and alkaline-expressed genes by ambient pH. EMBO J 14: 779–790

    PubMed  CAS  Google Scholar 

  • Tobin MB, Fleming MD, Skatrud PL, Miller JR (1990) Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli. J Bacteriol 172: 5908–5914

    PubMed  CAS  Google Scholar 

  • Tobin MB, Baldwin JE, Cole SCJ, Miller JR, Skatrud PL, Sutherland JD (1993) The requirement for subunit interaction in the production of Penicillium chrysogenum acyl-coenzyme A:isopenicillin N acyltransferase in Escherichia coli. Gene 132: 199–206

    Article  PubMed  CAS  Google Scholar 

  • Tobin MB, Cole SCJ, Miller JR, Baldwin JE, Sutherland JD (1995) Amino-acid substitutions in the cleavage site of acyl-coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum: effect on proenzyme cleavage and activity. Gene 162: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Turgay K, Krause M, Marahiel MA (1992) Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6: 529–546

    Article  PubMed  CAS  Google Scholar 

  • Turner G, Browne PE, Brakhage AA (1993) Expression of genes for the biosynthesis of penicillin. In: Maresca B, Kobayashi GS, Yamaguchi H (eds) Molecular Biology and its applications to medical mycology. NATO ASI Series H Cell Biol, vol 69. Springer, Berlin Heidelberg New York, pp 125–138

    Chapter  Google Scholar 

  • Ullan RV, Liu G, Casqueiro J, Gutiérrez S, Banuelos O, Martin JF (2002) The ceff gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genom 267: 673–683

    Article  CAS  Google Scholar 

  • Van de Kamp M, Driessen AJ, Konings WN (1999) Compartmentalization and transport in (3-lactam antibiotic biosynthesis by filamentous fungi. Antonie van Leeuwenhoel 75: 41–78

    Article  Google Scholar 

  • Van den Brulle J, Steidl S, Brakhage AA (1999) Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis. Appl Environ Microbiol 65: 5222–5228

    Google Scholar 

  • Van der Lende TR, van de Kamp M, van den Berg M, Sjollema K, Bovenberg RAL, Veenhuis M, Konings WN, Driessen AJM (2002) S-(L-a-Aminoadipyl)-Lcysteinyl-D-valine synthetase that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Van Heeswijck R, Hynes MJ (1991) The amdR product and a CCAAT-binding factor bind to adjacent, possibly overlapping DNA sequences in the promoter region of the Aspergillus nidulans amdS gene. Nucleic Acids Res 19: 2655–2660

    Article  PubMed  Google Scholar 

  • Van Liempt H, von Döhren H, Kleinkauf H (1989) S-(L-aAminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. J Biol Chem 264: 3680–3684

    PubMed  Google Scholar 

  • Veenstra AE, van Solingen P, Bovenberg RAL, van der Voort LHM (1991) Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. J Biotechnol 17: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Velasco J, Gutiérrez S, Fernandez FJ, Marcos AT, Arenos C, Martin JF (1994) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J Bacteriol 176: 985–991

    Google Scholar 

  • Velasco J, Gutiérrez S, Campoy S, Martin JF (1999) Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem J 337: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Velaso J, Luis Adrio J, Angel Moreno M, Diez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol 18: 857–861

    Article  CAS  Google Scholar 

  • Von Döhren H, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97: 2675–2705

    Article  Google Scholar 

  • Weidner G, Steidl S, Brakhage AA (2001) The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GATA sites. Arch Microbiol 175: 122–132

    Article  PubMed  CAS  Google Scholar 

  • Weigel BJ, Burgett SG, Chen VJ, Skatrud PL, Frolik CA, Queener SW, Ingolia TD (1988) Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol 170: 3817–3826

    PubMed  CAS  Google Scholar 

  • Whiteman PA, Abraham EP, Baldwin JE, Fleming MD, Schofield CJ, Sutherland JD, Willis AC (1990) Acyl coenzyme A:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans. FEBS Lett 262: 342–344

    Article  PubMed  CAS  Google Scholar 

  • Wolfe S, Demain AL, Jensen SE, Westlake DWS (1984) Enzymatic approach to synthesis of unnatural 3-lactams. Science 226: 1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Demain AL (1992a) ACV synthetase. Crit Rev Biotechnol 12: 245–260

    Article  CAS  Google Scholar 

  • Zhang J, Demain AL (1992b) Regulation of ACV synthetase activity by carbon sources and their metabolites. Arch Microbiol 158: 364–369

    Article  CAS  Google Scholar 

  • Zhang J, Wolfe S, Demain AL (1989) Carbon source regulation of the ACV synthetase in Cephalosporium acremonium C-10. Curr Microbiol 18: 361–367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brakhage, A.A., Caruso, M.L. (2004). Biotechnical Genetics of Antibiotic Biosynthesis. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics