Skip to main content

Penicillium chrysogenum: Genomics of an Antibiotics Producer

  • Chapter
  • First Online:
Genomics of Soil- and Plant-Associated Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

Abstract

Penicillium chrysogenum, the “golden” fungus, not only derives its name from the color of the secondary metabolite chrysogenin but also truly deserves such recognition due to the millions of lives saved by prescriptions based on the β-lactam antibiotics produced by the fungus. In 1928 Sir Alexander Fleming was the world’s first reported observer of the antibacterial activity secreted by a fungal colony (Fleming, Br J Exp Pathol 10:226–236, 1929). Starting from this legendary and somewhat lucky finding to the current industrialized production processes, more than 80 years of research has enormously improved the understanding of penicillin production. The availability of the genome sequence (van den Berg et al., Nat Biotechnol 26:1161–1168, 2008) helps to make the link from biochemical observations to genetic traits and to further understand the fungal metabolism. This improved insight will make it possible to exploit opportunities to orient research towards the discovery of new metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although Houbraken et al. (2011) demonstrated that both Fleming’s isolate and the Wisconsin 54–1,255 strain are not P. chrysogenum but P. rubens, the name P. chrysogenum will be used throughout this chapter to avoid confusion as the P. rubens name is not yet used in databases, culture collections, and literature.

  2. 2.

    In total 8 species of Penicillium are reported to produce penicillin in culture: P. allii-sativi, P. chrysogenum, P. dipodomyis, P. flavigenum, P. nalgiovense, P. rubens, P. tardochrysogenum and P. vanluykii (Houbraken et al. 2012).

References

  • Adeleye IA, Eruba S, Ezeani CJ (2004) Isolation and characterization of antibiotic producing microorganisms in composted Nigerian soil. J Environ Biol 25:313–315

    PubMed  CAS  Google Scholar 

  • Affenzeller K, Kubicek CP (1991) Evidence for a compartmentation of penicillin biosynthesis in a high- and a low-producing strain of Penicillium chrysogenum. J Gen Microbiol 137:1653–1660

    Article  PubMed  CAS  Google Scholar 

  • Ahuja M, Chiang YM, Chang SL, Praseuth MB, Entwistle R, Sanchez JF, Lo HC, Yeh HH, Oakley BR, Wang CC (2012) Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc 134:8212–8221

    Article  PubMed  CAS  Google Scholar 

  • Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg RA, Vreeken RJ, Driessen AJ (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS One 8:e65328

    Article  PubMed  CAS  Google Scholar 

  • Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS, Larsen LS (2011) Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77:4180–4188

    Article  PubMed  CAS  Google Scholar 

  • Anderson RF, Whitmore LM, Brown WE, Peterson WH, Churchill BW, Roegner FR, Campbell TH, Backus MP, Stauffer JF (1953) Production of penicillin by some pigmentless mutants of the mold, Penicillium chrysogenum Q176. Ind Eng Chem 45:768–773

    Article  CAS  Google Scholar 

  • Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA (2000) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263:966–977

    Article  PubMed  CAS  Google Scholar 

  • Avramović M (2011) Analysis of the genetic potential of the sponge derived fungus Penicillium chrysogenum E01-10/3 for polyketide production. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn

    Google Scholar 

  • Backus MP, Stauffer JF (1955) The production and selection of a family of strains in Penicillium chrysogenum. Mycologia 47:429–463

    Article  Google Scholar 

  • Bancerz R, Ginalska G, Fiedurek J, Gromada A (2005) Cultivation conditions and properties of extracellular crude lipase from the psychrotrophic fungus Penicillium chrysogenum 9′. J Ind Microbiol Biotechnol 32:253–260

    Article  PubMed  CAS  Google Scholar 

  • Barreiro C, Martín JF, García-Estrada C (2012) Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012:105109

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kück U (2013) Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci USA 110:1476–1481

    Article  PubMed  Google Scholar 

  • Braumann I, van den Berg M, Kempken F (2008) Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet 53:287–297

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Lang G, Mühlbacher J, Schaumann K, Steffens S, Rytik PG, Hentschel U, Morschhäuser J, Müller WE (2003) Sorbicillactone A: a structurally unprecedented bioactive novel-type alkaloid from a sponge-derived fungus. Prog Mol Subcell Biol 37:231–253

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Gulder TA, Lang G, Schmitt S, Stöhr R, Wiese J, Nagel K, Imhoff JF (2007) Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs 5:23–30

    Article  PubMed  CAS  Google Scholar 

  • Burzlaff NI, Rutledge PJ, Clifton IJ, Hensgens CM, Pickford M, Adlington RM, Roach PL, Baldwin JE (1999) The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401:721–724

    Article  PubMed  CAS  Google Scholar 

  • Cantoral JM, Gutiérrez S, Fierro F, Gil-Espinosa S, van Liempt H, Martín JF (1993) Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J Biol Chem 268:737–744

    PubMed  CAS  Google Scholar 

  • Cantwell CA, Beckmann RJ, Dotzlaf JE, Fisher DL, Skatrud PL, Yeh WK, Queener SW (1990) Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum. Curr Genet 17:213–221

    Article  PubMed  CAS  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    PubMed  CAS  Google Scholar 

  • Castillo NI, Fierro F, Gutiérrez S, Martín JF (2005) Genome-wide analysis of differentially expressed genes from Penicillium chrysogenum grown with a repressing or a non-repressing carbon source. Curr Genet 49:85–96

    Article  PubMed  CAS  Google Scholar 

  • Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol 1:94–100

    PubMed  CAS  Google Scholar 

  • Chen S, Dong H, Fan Y, Li W, Cohen Y (2006) Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Biol Control 39:460–464

    Article  CAS  Google Scholar 

  • Chooi YH, Cacho R, Tang Y (2010) Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem Biol 17:483–494

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Argaman A, Schreiber R, Mislovati M, Aharonowitz Y (1994) The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol 176:973–984

    PubMed  CAS  Google Scholar 

  • Cram DJ (1948) Mold metabolites; the structure of sorbicillin, a pigment produced by the mold Penicillium notatum. J Am Chem Soc 70:4240–4243

    Article  PubMed  CAS  Google Scholar 

  • Dai MC, Tabacchi R, Saturnin C (1993) Nitrogen-containing aromatic compound from the culture of Penicillium chrysogenum Thom. Chimia 47:226–229

    CAS  Google Scholar 

  • de la Campa R, Seifert K, Miller JD (2007) Toxins from strains of Penicillium chrysogenum isolated from buildings and other sources. Mycopathologia 163:161–168

    Article  PubMed  CAS  Google Scholar 

  • Devi P, D’Souza L, Kamat T, Rodrigues C, Naik CG (2009) Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin. Indian J Mar Sci 38:38–44

    CAS  Google Scholar 

  • Domínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C (2012) The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol 49:866–881

    Article  PubMed  CAS  Google Scholar 

  • Douma RD, Deshmukh AT, de Jonge LP, de Jong BW, Seifar RM, Heijnen JJ, van Gulik WM (2012) Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum. Biotechnol Prog 28:337–348

    Article  PubMed  CAS  Google Scholar 

  • Elander RP (2002) University of Wisconsin contributions to the early development of penicillin and cephalosporin antibiotics. SIM News 52:270–278

    Google Scholar 

  • Evers ME, Trip H, van den Berg MA, Bovenberg RA, Driessen AJ (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–135

    PubMed  CAS  Google Scholar 

  • Fernández-Aguado M, Teijeira F, Martín JF, Ullán RV (2013a) A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl Microbiol Biotechnol 97:795–808

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Aguado M, Ullán RV, Teijeira F, Rodríguez-Castro R, Martín JF (2013b) The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Appl Microbiol Biotechnol 97:3073–3084

    Article  PubMed  CAS  Google Scholar 

  • Fierro F, Barredo JL, Díez B, Gutierrez S, Fernández FJ, Martín JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204

    Article  PubMed  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–242

    Google Scholar 

  • García-Estrada C, Ullán RV, Velasco-Conde T, Godio RP, Teijeira F, Vaca I, Feltrer R, Kosalková K, Mauriz E, Martín JF (2008) Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem J 415:317–324

    Article  PubMed  CAS  Google Scholar 

  • García-Estrada C, Vaca I, Ullán RV, van den Berg MA, Bovenberg RA, Martín JF (2009) Molecular characterization of a fungal gene paralogue of the penicillin penDE gene of Penicillium chrysogenum. BMC Microbiol 9:104

    Article  PubMed  CAS  Google Scholar 

  • García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega M, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512

    Article  PubMed  CAS  Google Scholar 

  • García-Rico RO, Fierro F, Mauriz E, Gómez A, Fernández-Bodega MA, Martín JF (2008) The heterotrimeric Galpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology 154:3567–3578

    Article  PubMed  CAS  Google Scholar 

  • Geris R, Simpson TJ (2009) Meroterpenoids produced by fungi. Nat Prod Rep 26:1063–1094

    Article  PubMed  CAS  Google Scholar 

  • Gherbawy YA, Elhariry HM, Bahobial AA (2012) Mycobiota and mycotoxins (aflatoxins and ochratoxin) associated with some Saudi date palm fruits. Foodborne Pathog Dis 9:561–567

    Article  PubMed  CAS  Google Scholar 

  • Gombert AK, Veiga T, Puig-Martinez M, Lamboo F, Nijland JG, Driessen AJ, Pronk JT, Daran JM (2011) Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the β-lactam producer Penicillium chrysogenum. Fungal Genet Biol 48:831–839

    Article  PubMed  CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP (2012) Cellulases from Penicillium species for producing fuels from biomass. Biofuels 3:463–477

    Article  CAS  Google Scholar 

  • Hammadi DK, Selselet GA, Bensoultane SA (2007) Antibiotic like-substances produced by some trichophytic dermatophytes. Afr J Biotechnol 6:1788–1790

    Google Scholar 

  • Hansen BG, Sun XE, Genee HJ, Kaas CS, Nielsen JB, Mortensen UH, Frisvad JC, Hedstrom L (2012) Adaptive evolution of drug targets in producer and non-producer organisms. Biochem J 441:219–226

    Article  PubMed  CAS  Google Scholar 

  • Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RA, Pronk JT, Daran JM (2009a) Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 10:75

    Article  PubMed  CAS  Google Scholar 

  • Harris DM, Westerlaken I, Schipper D, van der Krogt ZA, Gombert AK, Sutherland J, Raamsdonk LM, van den Berg MA, Bovenberg RA, Pronk JT, Daran JM (2009b) Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metab Eng 11:125–137

    Article  PubMed  CAS  Google Scholar 

  • Hegedus N, Leiter E, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I (2011) The small molecular mass antifungal protein of Penicillium chrysogenum–a mechanism of action oriented review. J Basic Microbiol 51:561–571

    Article  PubMed  CAS  Google Scholar 

  • Henk DA, Eagle CE, Brown K, van den Berg MA, Dyer PS, Peterson SW, Fisher MC (2011) Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming’s lucky fungus. Mol Ecol 20:4288–4301

    Article  PubMed  CAS  Google Scholar 

  • Hill P (1972) The production of penicillins in soils and seeds by penicillium chrysogenum and the role of penicillin -lactamase in the ecology of soil bacillus. J Gen Microbiol 70:243–252

    Article  PubMed  CAS  Google Scholar 

  • Hillenga DJ, Versantvoort H, van der Molen S, Driessen A, Konings WN (1995) Penicillium chrysogenum takes up the penicillin G precursor phenylacetic acid by passive diffusion. Appl Environ Microbiol 61:2589–2595

    PubMed  CAS  Google Scholar 

  • Hoff B, Pöggeler S, Kück U (2008) Eighty years after its discovery, Fleming’s Penicillium strain discloses the secret of its sex. Eukaryot Cell 7:465–470

    Article  PubMed  CAS  Google Scholar 

  • Hördt W, Römheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Biometals 13:37–46

    Article  PubMed  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2:87–95

    Article  PubMed  Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    PubMed  CAS  Google Scholar 

  • Ismail MA (2001) Deterioration and spoilage of peanuts and desiccated coconuts from two sub-Saharan tropical East African countries due to the associated mycobiota and their degradative enzymes. Mycopathologia 150:67–84

    Article  PubMed  CAS  Google Scholar 

  • Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2009a) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744

    Google Scholar 

  • Jami MS, Barreiro C, García-Estrada C, Martín JF (2009b) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198

    Google Scholar 

  • Jørgensen H, Nielsen J, Villadsen J, Møllgaard H (1995) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol Bioeng 46:117–131

    Article  PubMed  Google Scholar 

  • Karolewiez A, Geisen R (2005) Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterization of the ochratoxin polyketide synthase gene. Syst Appl Microbiol 28:588–595

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M (2005) Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol 42:154–164

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, van den Berg MA, Fusetti F, Poolman B, Bovenberg RA, Veenhuis M, van der Klei IJ (2009) Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 9:167–184

    Article  PubMed  CAS  Google Scholar 

  • Koetsier MJ, Gombert AK, Fekken S, Bovenberg RA, van den Berg MA, Kiel JA, Jekel PA, Janssen DB, Pronk JT, van der Klei IJ, Daran JM (2010) The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. Fungal Genet Biol 47:33–42

    Article  PubMed  CAS  Google Scholar 

  • Kosalková K, Rodríguez-Sáiz M, Barredo JL, Martín JF (2007) Binding of the PTA1 transcriptional activator to the divergent promoter region of the first two genes of the penicillin pathway in different Penicillium species. Curr Genet 52:229–237

    Article  PubMed  CAS  Google Scholar 

  • Kozlovsky AG, Vinokurova NG, Ozerskaya SM (1998) Peculiarities of alkaloid formation in Penicillium chrysogenum strains isolated from soils of different climatic zones. Microbiology (Moscow) 67:397–400

    Google Scholar 

  • Lamas-Maceiras M, Vaca I, Rodriguez E, Casqueiro J, Martin JF (2006) Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochem J 395:147–155

    Article  PubMed  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015

    Article  PubMed  CAS  Google Scholar 

  • Lein J (1986) The Panlabs penicillin strain improvement program. Butterworth, Boston

    Google Scholar 

  • Leiter E, Emri T, Gyémánt G, Nagy I, Pócsi I, Winkelmann G, Pócsi I (2001) Penicillin V production by Penicillium chrysogenum in the presence of Fe3+ and in low-iron culture medium. Folia Microbiol (Praha) 46:127–132

    Article  CAS  Google Scholar 

  • Leiter E, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49:2445–2453

    Article  PubMed  CAS  Google Scholar 

  • Lowe DA (2001) Antibiotics. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, Cambridge, pp 349–375

    Google Scholar 

  • Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171

    Article  PubMed  CAS  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709

    Article  PubMed  CAS  Google Scholar 

  • Mishra MM, Singh CP, Kapoor KK, Jain MK (1979) Degradation of lignocellulosic material and humus formation by fungi. Ann Microbiol (Paris) 130 A(4):481–486

    CAS  Google Scholar 

  • Moreillon P, Markiewicz Z, Nachman S, Tomasz A (1990) Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother 34:33–39

    Article  PubMed  CAS  Google Scholar 

  • Murali M, Sudisha J, Amruthesh KN, Ito SL, Shetty HS (2012) Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol (Stuttg) 15(1):111–118. doi:10.1111/j.1438-8677.2012.00617.x

    Article  CAS  Google Scholar 

  • Pieniazek N, Stepień PP, Paszewski A (1973) An Aspergillus nidulans mutant lacking cystathionine -synthase: identity of L-serine sulfhydrylase with cystathionine -synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim Biophys Acta 297:37–47

    Article  PubMed  CAS  Google Scholar 

  • Pócsi I, Molnár Z, Pusztahelyi T, Varecza Z, Emri T (2007) Yeast-like cell formation and glutathione metabolism in autolysing cultures of Penicillium chrysogenum. Acta Biol Hung 58:431–440

    Article  PubMed  Google Scholar 

  • Queener SW, Sebek OK, Vezina C (1978) Mutants blocked in antibiotic synthesis. Annu Rev Microbiol 32:593–636

    Article  PubMed  CAS  Google Scholar 

  • Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fungal Biol 115:406–420

    Article  PubMed  CAS  Google Scholar 

  • Raper KB, Alexander DR, Coghill RD (1944) Penicillin II. Natural variation and penicillin production in Penicillium notatum and allied species. J Bacteriol 48:639–659

    PubMed  CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349:121–156

    Article  CAS  Google Scholar 

  • Robin J, Bonneau S, Schipper D, Noorman H, Nielsen J (2003) Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. Metab Eng 5:42–48

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez A, Carnicero A, Perestelo F, de la Fuente G, Milstein O, Falcón MA (1994) Effect of Penicillium chrysogenum on Lignin Transformation. Appl Environ Microbiol 60:2971–2976

    PubMed  Google Scholar 

  • Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum. Appl Microbiol Biotechnol 88:519–528

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Sáiz M, Barredo JL, Moreno MA, Fernández-Cañón JM, Peñalva MA, Díez B (2001) Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J Bacteriol 183:5465–5471

    Article  PubMed  Google Scholar 

  • Roussel S, Reboux G, Millon L, Parchas MD, Boudih S, Skana F, Delaforge M, Rakotonirainy MS (2012) Microbiological evaluation of ten French archives and link to occupational symptoms. Indoor Air 22:514–522

    Article  PubMed  CAS  Google Scholar 

  • Sakai R, Nakamura T, Nishino T, Yamamoto M, Miyamura A, Miyamoto H, Ishiwata N, Komatsu N, Kamiya H, Tsuruzoe N (2005) Xanthocillins as thrombopoietin mimetic small molecules. Bioorg Med Chem 13:6388–6393

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H, Kasai N (2011) Identification of a GH62 α-L-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl Microbiol Biotechnol 90:137–146

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Inui M, Yasui K, Tokuda S, Akiyoshi M, Kobori Y, Nakaniwa T, Tada T (2012) Biochemical characterization and gene expression of two endo-arabinanases from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol 93:1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Nishimura Y, Makino Y, Sunagawa Y, Harada N (2013a) Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum. Appl Microbiol Biotechnol 97(7):2895–2906

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Inui M, Yasui K, Hosokawa S, Ihara H (2013b) Substrate specificity and gene expression of two Penicillium chrysogenum α-L: -arabinofuranosidases (AFQ1 and AFS1) belonging to glycoside hydrolase families 51 and 54. Appl Microbiol Biotechnol 97(3):1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and Indoor Fungi. CBS-KNAW- Fungal Biodiversity Centre, Utrecht, pp 1–398

    Google Scholar 

  • Seibold M, Wolschann P, Bodevin S, Olsen O (2011) Properties of the bubble protein, a defensin and an abundant component of a fungal exudate. Peptides 32:1989–1995

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T (2005) Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 71:3453–3457

    Article  PubMed  CAS  Google Scholar 

  • Sio CF, Riemens AM, van der Laan JM, Verhaert RM, Quax WJ (2002) Directed evolution of a glutaryl acylase into an adipyl acylase. Eur J Biochem 269:4495–4504

    Article  PubMed  CAS  Google Scholar 

  • Skatrud PL (1992) Genetic engineering of β-lactam antibiotic biosynthetic pathways in filamentous fungi. Trends Biotechnol 10:324–329

    Article  PubMed  CAS  Google Scholar 

  • Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM, Brakhage AA (2008) Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 70:445–461

    Article  PubMed  CAS  Google Scholar 

  • Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF (2009) The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418:113–124

    Article  PubMed  CAS  Google Scholar 

  • Thom C (1910) Cultural studies of species of Penicillium. Bull Bur Anim Ind, USDA 118:1–109

    Google Scholar 

  • Thuerig B, Binder A, Boller T, Guyer U, Jiménez S, Rentsch C, Tamm L (2006) An aqueous extract of the dry mycelium of Penicillium chrysogenum induces resistance in several crops under controlled and field conditions. Eur J Plant Pathol 114:185–197

    Article  Google Scholar 

  • Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF (2008) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem Biol 14:329–339

    Article  CAS  Google Scholar 

  • Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF (2010) Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J 432:227–236

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg MA (2010) Functional characterisation of penicillin production strains. Fungal Biol Rev 24:73–78

    Article  Google Scholar 

  • van den Berg MA (2011) Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl Microbiol Biotechnol 92:45–53

    Article  PubMed  CAS  Google Scholar 

  • van den Berg MA, Bovenberg RA, de Laat WT, van Velzen AG (1999) Engineering aspects of beta-lactam biosynthesis. Antonie Van Leeuwenhoek 75:155–161

    PubMed  Google Scholar 

  • Van den Berg MA, Bovenberg RAL, Driessen AJM, Konings WN, Schuurs TA, Nieboer M, Westerlaken I (2001) Method for enhancing secretion of beta-lactam transport. PCT patent WO 2001/32904

    Google Scholar 

  • Van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RAL (2007) Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54–1255. Fungal Genet Biol 44:830–844

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, der Kleij V, van Peij NN, Veenhuis M, von Döhren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • van den Berg MA, Gidijala L, Kiel J, Bovenberg R, van der Kleij I (2010) Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnol Genet Eng Rev 27:1–32

    Article  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  PubMed  CAS  Google Scholar 

  • van der Lende TR, van de Kamp M, Berg M, Sjollema K, Bovenberg RA, Veenhuis M, Konings WN, Driessen AJ (2002) delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37:49–55

    Article  PubMed  CAS  Google Scholar 

  • van Gulik WM, de Laat WT, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68:602–618

    Article  PubMed  Google Scholar 

  • Veiga T, Nijland JG, Driessen AJ, Bovenberg RA, Touw H, van den Berg MA, Pronk JT, Daran JM (2012a) Impact of velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a β-lactam high-producing Penicillium chrysogenum strain. OMICS 16:320–333

    Article  PubMed  CAS  Google Scholar 

  • Veiga T, Gombert AK, Landes N, Verhoeven MD, Kiel JA, Krikken AM, Nijland JG, Touw H, Luttik MA, van der Toorn JC, Driessen AJ, Bovenberg RA, van den Berg MA, van der Klei IJ, Pronk JT, Daran JM (2012b) Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis. Metab Eng 14:437–448

    Article  PubMed  CAS  Google Scholar 

  • Velasco J, Gutiérrez S, Casqueiro J, Fierro F, Campoy S, Martín JF (2001) Cloning and characterization of the gene cahB encoding a cephalosporin C acetylhydrolase from Acremonium chrysogenum. Appl Microbiol Biotechnol 57:350–356

    Article  PubMed  CAS  Google Scholar 

  • Wallwey C, Li SM (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496–510

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Kovalchuk A, Bovenberg RA, Driessen AJ (2012a) The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum. Fungal Genet Biol 49:915–921

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Polli F, Boer R, Bovenberg RA, Driessen AJ (2012b) Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillin N acyltransferase. Appl Environ Microbiol 78:7107–7113

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Olejníčková K, Nijland JG, Kovalchuk A, Daran J, Pronk JT, Bovenberg RAL, Driessen AJM (2012c) Genome wide analysis of the β-lactam associated transportome in Penicillium chrysogenum. Ph.D. thesis, Groningen University. Chapter 5

    Google Scholar 

  • White S, Berry DR, McNeil B (1999) Effect of phenylacetic acid feeding on the process of cellular autolysis in submerged batch cultures of Penicillium chrysogenum. J Biotechnol 75:173–185

    Article  PubMed  CAS  Google Scholar 

  • Woo PC, Tam EW, Chong KT, Cai JJ, Tung ET, Ngan AH, Lau SK, Yuen KY (2010) High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J 277:3750–3758

    Article  PubMed  CAS  Google Scholar 

  • Wu X, García-Estrada C, Vaca I, Martín JF (2012) Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie 94:354–364

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, van de Sandt E, de Weerd T, Wang NL (2001) Purification of adipoyl-7-amino-3-deacetoxycephalosporanic acid from fermentation broth using stepwise elution with a synergistically adsorbed modulator. J Chromatogr A 908:273–291

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Yang J, An Y, Pan Y, Liu G (2012) Over-expression of pcvA involved in vesicle-vacuolar fusion affects the conidiation and penicillin production in Penicillium chrysogenum. Biotechnol Lett 34:519–526

    Article  PubMed  CAS  Google Scholar 

  • Zhelifonova VP, Antipova TV, Kozlovsky AG (2010) Secondary metabolites in taxonomy of the penicillium fungi. Microbiology 79:277–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. van den Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Berg, M.A. (2013). Penicillium chrysogenum: Genomics of an Antibiotics Producer. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_10

Download citation

Publish with us

Policies and ethics