Skip to main content

What is the Specificity of Plant Subtelomeres?

  • Chapter
  • First Online:
Subtelomeres

Abstract

According to the current concept, formed through a comprehensive analysis of the molecular structure of human and yeast subtelomeres, these regions are particularly dynamic and variable parts of chromosomes enriched for segmental duplications. This chapter considers to what degree this concept is applicable to the subtelomeres of plant species with different genome sizes paying a special attention on the own results on the rye (Secale cereale) subtelomeric heterochromatin. The rye belongs to the species with a large genome size (8.3 × 109 bp). The S. cereale genome has increased during the evolution mostly through enlargement of the subtelomeric heterochromatic regions. The main components of this heterochromatin are a few multicopy tandemly repeated DNA families. Several arrays of each family localized to separate nonoverlapping domains have been detected in the short arm of the first rye chromosome. They display specific patterns of hierarchical arrangement into multimeric blocks, where the monomers form various higher-order repeat units. In conclusion, the data on a high rate of recombination characteristic of the plant subtelomeres are summarized. The consequence of these recombinations is various types of molecular rearrangements in these chromosomal regions, which contribute to the overall size of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkhimova, E. G., Heslop-Harrison, J. S., Shchapova, A. I., & Vershinin, A. V. (1999). Rye chromosome variability in wheat–rye addition and substitution lines. Chromosome Research, 7, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini, A., Paul, S., Hu, S., & Riethman, H. (2007). Human subtelomeric duplicon structure and organization. Genome Biology, 8, R151.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ananiev, E. V., Phillips, R. L., & Rines, H. W. (1998). A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proceedings of the National Academy of Sciences of the United States of America, 95, 10785–10790.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson, J. A., Song, Y. S., & Langley, C. H. (2008). Molecular population genetics of Drosophila subtelomeric DNA. Genetics, 178, 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, L. K., Lai, A., Stack, S. M., Rizzon, C., & Gaut, B. S. (2006). Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Research, 16, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Appels, R., Dennis, E. S., Smith, D. R., & Peacock, W. J. (1981). Two repeated DNA sequences from the heterochromatic regions of rye Secale cereale chromosomes. Chromosoma, 84, 265–277.

    Article  CAS  Google Scholar 

  • Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815.

    Article  Google Scholar 

  • Bedbrook, J. R., Jones, J., O’Dell, M., Tompson, R., & Flavell, R. (1980). A molecular description of telomeric heterochromatin in Secale species. Cell, 19, 545–560.

    Article  CAS  PubMed  Google Scholar 

  • Belostotsky, D. A., & Ananiev, E. V. (1990). Characterization of relic DNA from barley genome. Theoretical and Applied Genetics, 80, 374–380.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M. D., Gustafson, J. P., & Smith, J. B. (1977). Variation in nuclear DNA in the genus Secale. Chromosoma, 62, 149–176.

    Article  Google Scholar 

  • Buzek, J., Koutnikova, H., Houben, A., et al. (1997). Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Research, 5, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Copenhaver, G. P., & Pikaard, C. S. (1996). RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. The Plant Journal, 9, 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Fajkus, J., Kralovics, R., Kovarik, A., & Fajkusova, L. (1995). The telomeric sequence is directly attached to the HRS60 subtelomeric tandem repeat in tobacco chromosomes. FEBS Letters, 364, 33–35.

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Zhang, Y., Yu, Y., Rounsley, S., Long, M., & Wing, R. A. (2008). The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice. Molecular Plant, 1, 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Flint, J., Bates, G. P., Clark, K., Dorman, A., Willington, D., Roe, B. A., et al. (1997). Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Human Molecular Genetics, 6, 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  • Ganal, M. W., Lapitan, N. L. V., & Tanksley, S. D. (1991). Macrostructure of the tomato telomeres. The Plant Cell, 3, 87–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill, B. S., & Kimber, G. (1974). Giemsa C-banding and the evolution of wheat. Proceedings of the National Academy of Sciences of the United States of America, 71, 4086–4090.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Garcia, M., Gonzalez-Sanchez, M., & Puertas, M. J. (2006). The high variability of subtelomeric heterochromatin and connections between nonhomologous chromosomes, suggest frequent ectopic recombination in rye meiocytes. Cytogenetic and Genome Research, 115, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Gorbunova, V. V., & Levy, A. A. (1999). How plants make ends meet: DNA double-strand break repair. Trends in Plant Science, 4, 263–269.

    Article  PubMed  Google Scholar 

  • Hake, S., & Walbot, V. (1980). The genome of Zea mays, its organization and homology to related grasses. Chromosoma, 79, 251–270.

    Article  CAS  Google Scholar 

  • Harper, L., Golubovskaya, I., & Cande, W. Z. (2004). A bouquet of chromosomes. Journal of Cell Science, 117, 4025–4032.

    Article  CAS  PubMed  Google Scholar 

  • Heacock, M., Spangler, E., Riha, K., Puizina, J., & Shippen, D. E. (2004). Molecular analysis of telomeric fusions in Arabidopsis: Multiple pathways for chromosome end-joining. The EMBO Journal, 23, 2304–2313.

    Article  CAS  PubMed  Google Scholar 

  • Horakova, M., & Fajkus, J. (1999). TAS49—A dispersed repetitive sequence isolated from subtelomeric regions of Nicotiana tomentosiformis chromosomes. Genome, 43, 273–284.

    Google Scholar 

  • International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.

    Article  Google Scholar 

  • Killian, A., & Kleinhofs, A. (1992). Cloning and mapping of telomere-associated sequences from Hordeum vulgare L. Molecular and General Genetics, 235, 153–156.

    Article  Google Scholar 

  • Kimura, M., & Ohta, T. (1979). Population genetics of multigene family with special reference to decrease of genetic correlation with distance between gene members on a chromosome. Proceedings of the National Academy of Sciences of the United States of America, 76, 4001–4005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirik, A., Salomon, S., & Puchta, H. (2000). Species-specific double-strand break repair and genome evolution in plants. The EMBO Journal, 19, 5562–5566.

    Article  CAS  PubMed  Google Scholar 

  • Kotani, H., Hosouchi, T., & Tsuruoka, H. (1999). Structural analysis and complete physical map of Arabidopsis thaliana chromosome 5 including centromeric and telomeric regions. DNA Research, 6, 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Koukalova, B., Reich, J., Matyasek, R., Kuhrova, V., & Bezdek, M. (1989). A BamHI family of highly repeated DNA sequences of Nicotiana tabacum. Theoretical and Applied Genetics, 78, 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, H.-F., Olsen, K. M., & Richards, E. J. (2006). Natural variation in a subtelomeric region of Arabidopsis: Implications for the genomic dynamics of a chromosome end. Genetics, 173, 401–417.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, J. C., Meyer, J. M., Corcoran, B., Kato, A., Han, F., & Birchler, J. A. (2007). Distinct chromosomal distribution of highly repetitive sequences in maize. Chromosome Research, 15, 33–49.

    Article  CAS  PubMed  Google Scholar 

  • Linardopoulou, E. V., Williams, E. M., Fan, Y., Friedman, C., Young, J. M., & Trask, B. J. (2005). Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature, 437, 94–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linde-Laursen, I. (1978). Giemsa C-banding of barley chromosomes. I. Banding pattern polymorphism. Hereditas, 88, 55–64.

    Article  Google Scholar 

  • Louis, E. J., Naumova, E. S., Lee, A., Naumov, G., & Haber, J. E. (1994). The chromosome end in yeasts: Its mosaic nature and influence on recombinational dynamics. Genetics, 136, 789–802.

    CAS  PubMed  Google Scholar 

  • Louis, E. J., & Vershinin, A. V. (2005). Chromosome ends: Different sequences may provide conserved functions. BioEssays, 27, 685–697.

    Article  CAS  PubMed  Google Scholar 

  • Lundblad, V., & Blackburn, E. H. (1993). An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell, 73, 347–360.

    Article  CAS  PubMed  Google Scholar 

  • Mao, L., Devos, K. M., Zhu, L., & Gale, M. D. (1997). Cloning and genetic mapping of wheat telomere-associated sequences. Molecular and General Genetics, 254, 584–591.

    Article  CAS  PubMed  Google Scholar 

  • McClintock, B. (1941). The stability of broken ends of chromosomes in Zea mays. Genetics, 26, 234–282.

    CAS  PubMed  Google Scholar 

  • McIntyre, C. L., Pereira, S., Moran, L. B., & Appels, R. (1990). New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome, 33, 317–323.

    Article  Google Scholar 

  • Mefford, H. C., & Trask, B. J. (2002). The complex structure and dynamic evolution of human subtelomeres. Nature Reviews Genetics, 3, 91–102.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, H., Wu, J., Kanamori, H., Fujisawa, M., Namiki, N., Saji, S., et al. (2006). Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The Plant Journal, 46, 206–217.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, H., Wu, J., Katayose, Y., Kanamori, H., Sasaki, T., & Matsumoto, T. (2008). Characterization of chromosome ends on the basis of the structure of TrsA subtelomeric repeats in rice (Oryza sativa L.). Molecular Genetics and Genomics, 280, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Ohmido, N., & Fukui, K. (1997). Visual verification of close disposition between a rice A-genome specific DNA sequence (TrsA) and the telomere sequences. Plant Molecular Biology, 35, 963–968.

    Article  CAS  PubMed  Google Scholar 

  • Peacock, W. J., Dennis, E. S., Roades, M. M., & Pryor, A. (1981). Highly repeated DNA sequence limited to knob heterochromatin in maize. Proceedings of the National Academy of Sciences of the United States of America, 78, 4490–4494.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puchta, H. (2005). The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution. Journal of Experimental Botany, 56, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowicz, P. D., & Bennetzen, J. L. (2006). The maize genome as a model for efficient sequence analysis of large plant genomes. Current Opinion in Plant Biology, 9, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Riethman, H., Ambrosini, A., Castaneda, C., Finklestein, J., Hu, X.-L., Mudunuri, U., et al. (2004). Mapping and initial analysis of human subtelomeric sequence assemblies. Genome Research, 14, 18–28.

    Article  CAS  PubMed  Google Scholar 

  • Rudd, M. K., Endicott, R. M., Friedman, C., Walker, M., et al. (2009). Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Research, 19, 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Salomon, S., & Puchta, H. (1998). Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. The EMBO Journal, 17, 6086–6095.

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y. K., et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science, 274, 765–768.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher, T. (2003). Meiosis, recombination and chromosomes: A review of gene isolation and fluorescent in situ hybridization data in plants. Journal of Experimental Botany, 54, 11–23.

    Article  CAS  PubMed  Google Scholar 

  • Sykorova, E., Cartagena, J., Horakova, M., Fukui, K., & Fajkus, J. (2003). Characterization of telomere–subtelomere junctions in Silene latifolia. Molecular Genetics and Genomics, 269, 13–20.

    CAS  PubMed  Google Scholar 

  • Torres, G. A., Gong, Z., Iovene, M., et al. (2011). Organization and evolution of subtelomeric satellite repeats in the potato genome. Genes Genomes Genet, 1, 85–92.

    CAS  Google Scholar 

  • Uchida, W., Matsunaga, S., Sugiyama, R., & Kawano, S. (2002). Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes and Genetic Systems, 77, 63–67.

    Article  CAS  PubMed  Google Scholar 

  • Vershinin, A. V., Schwarzacher, T., & Heslop-Harrison, J. S. (1995). The large-scale organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell, 7, 1823–1833.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viinikka, Y., & Nokkala, S. (1981). Interchromosomal connections in meiosis of Secale cereale. Hereditas, 95, 219–224.

    Article  Google Scholar 

  • Wang, C.-T., Ho, C.-H., Hseu, M.-J., & Chen, C.-M. (2010). The subtelomeric region of the Arabidopsis thaliana chromosome IIIR contains potential genes and duplicated fragments from other chromosomes. Plant Molecular Biology, 74, 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Yamagata, H., Hayashi-Tsugane, M., et al. (2004). Composition and structure of the centromeric region of rice chromosome 8. The Plant Cell, 16, 967–976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, T.-J., Yu, Y., Chang, S.-B., de Jong, H., Oh, C.-S., Ahn, S.-N., et al. (2005). Toward closing rice telomere gaps: Mapping and sequence characterization of rice subtelomere regions. Theoretical and Applied Genetics, 111, 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, X.-B., Fransz, P. F., Wennekes-Eden, J., et al. (1998). FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. The Plant Journal, 13, 507–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. J. Dolezel and J. Safar, Institute of Experimental Botany, Olomouc, Czech Republic, who kindly provided the 1RS BAC library. The research of authors is supported by the Siberian Branch of the Russian Academy of Sciences (Integration project 51) and Russian Foundation for Basic Research (Grants 08-04-00784 and 12-04-00512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vershinin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vershinin, A.V., Evtushenko, E.V. (2014). What is the Specificity of Plant Subtelomeres?. In: Louis, E., Becker, M. (eds) Subtelomeres. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41566-1_11

Download citation

Publish with us

Policies and ethics