Skip to main content

The Alcohol Fermentation Step: The Most Common Ethanologenic Microorganisms Among Yeasts, Bacteria and Filamentous Fungi

  • Chapter
  • First Online:
Lignocellulose Conversion

Abstract

Ethanol fermentation using the hydrolysate obtained after the saccharification of biomass is the last step in lignocellulosic bioethanol production process. The hydrolysate contains large amount of fermentable sugars that can be directly used by the ethanologenic microorganisms. Yeast is the most commonly and widely used microorganism for commercial ethanol production due to its some special characteristics such as fast growth rates, efficient glucose repression, efficient ethanol production, and a tolerance for environmental stresses, like high ethanol concentration and low oxygen levels. In addition to yeast, there are several other fungi and bacteria that can produce ethanol under various fermentation conditions. This chapter describes the most common wild-type microorganisms used for the fermentative production of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41:2333–2336

    Article  CAS  Google Scholar 

  • Alexander MA, Chapman TW, Jeffries TW (1988) Continuous xylose fermentation by Candida shehatae in a two-stage reactor. Appl Biochem Biotechnol 17:221–229

    Article  CAS  Google Scholar 

  • Asachi R, Karimi K, Taherzadeh MJ (2011) Ethanol production from Mucor indicus using the fungal autolysate as a nutrient supplement. World Renewable Energy Congress, Likoping, Sweden, 8–13 May 2011

    Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  • Campos EJ, Qureshi N, Blaschek HP (2002) Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Appl Biochem Biotechnol 98–100:553–561

    Article  PubMed  Google Scholar 

  • Canilha L, Carvalho W, Felipe MdG, Silva JB, Giuli M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Wi SG, Kim S-B, Bae H-J (2012) Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour Technol 125:132–137

    Article  PubMed  CAS  Google Scholar 

  • Dahiya M, Vij S (2012) Comparative analysis of bioethanol production from whey by different strains of immobilized thermotolerant yeast. Int J Sci Res Publ 2(3). ISSN 2250-3153

    Google Scholar 

  • Davison BH, Scott CD (1988) Operability and feasibility of ethanol production by immobilized Zymomonas mobilis in a fluidized-bed bioreactor. Appl Biochem Biotechnol 18:19–34

    Article  CAS  Google Scholar 

  • Dogaris I, Gkounta O, Mamma D, Kekos D (2012) Bioconversion of dilute acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl Biochem Biotechnol 95:541–550

    CAS  Google Scholar 

  • Ergun M, Mutlu SF, Gurel O (1997) Improved ethanol production by Saccharomyces cerevisiae with EDTA, ferrocyanide and zeolite X addition to sugar beet molasses. J Chem Technol Biotechnol 68:147–150

    Article  CAS  Google Scholar 

  • Fotheringham I, Kaftzik N, Oswald N (2009) Method for detecting biofuel producing microbes, Patent WO/2009/014722, WIPO

    Google Scholar 

  • García-Aparicio MP, Oliva JM, Manzanares P, Ballesteros M, Ballesteros I, González A, Negro MJ (2011) Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90:1624–1630

    Article  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, woody substrate for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis NCIM 3498. Bioresour Technol 100:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Hagerdal BH, Jonsson B, Vogel EL (1985) Shifting product formation from xylitol to ethanol in pentose fermentations using Candida tropicalis by adding polyethylene glycol (PEG). Appl Microbiol Biotechnol 21:73–175

    Google Scholar 

  • Jeffries TW, Alexander MA (2012) Production of ethanol from xylose by Candida shehatae grown under continuous or fed-batch conditions. In: Kirk TK, Chang H-M (eds) Biotechnology in pulp and paper manufacture. Proceedings of the fourth international conference on biotechnology in the pulp and paper industry, Butterworth-Heinermann, USA, pp 311–321

    Google Scholar 

  • Joshi SK, Verma J (1990) Production of ethanol from sugars in wood hydrolysate by Fusarium oxysporum. World J Microbiol Biotechnol 6:10–14

    Article  CAS  Google Scholar 

  • Junior MM, Batistote M, Cilli EM, Ernandes JR (2009) Sucrose fermentation by Brazilian ethanol production yeast in media containing structurally complex nitrogen sources. J Inst Brewing 115:191–197

    Article  Google Scholar 

  • Kruse B, Schuger K (1996) Investigation of ethanol formation by Pachysolen tannophilus from xylose and glucose/xylose co-substrate. Process Biochem 31:389–407

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354

    Article  CAS  Google Scholar 

  • Lacis LS, Lawford HG (1991) Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures. Appl Environ Microbiol 57(2):579–585

    PubMed  CAS  Google Scholar 

  • Lastick SM, Mohagheghi A, Tucker MP, Grohmann K (1990) Simultaneous fermentation and isomerization of xylose to ethanol at high xylose concentrations. Appl Biochem Biotechnol 24(25):431

    Article  Google Scholar 

  • Lawford HG, Rousseau JD (1997) Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentations. Appl Biochem Biotechnol 63–65:287–304

    Article  PubMed  Google Scholar 

  • Linde M, Glabe G, Zacchi G (2007) Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzym Microb Technol 40:1100–1107

    Article  CAS  Google Scholar 

  • Margaritis A, Bajpai P (1982) Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol 44:1039–1041

    PubMed  CAS  Google Scholar 

  • Maye JP (2006) Use of hop acids in fuel ethanol production. US patent. Patent US2006263484

    Google Scholar 

  • Maziar SA (2010) A study on some efficient parameters in batch fermentation of ethanol using S. cerevisiae SC1 extracted from fermented Siahe Sardasht Pomace. Afr J Biotechnol 9:2906–2912

    Google Scholar 

  • Nakayama S, Morita T, Negishi H, Ikegami T, Sakaki K, Kitamoto D (2008) Candida krusei produces ethanol without production of succinic acid: a potential advantage for ethanol recovery bypervaporation membrane separation. FEMS Yeast Res 8:706–714

    Article  PubMed  CAS  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87–100

    Article  PubMed  Google Scholar 

  • Nikolic S, Mojovic L, Pejin D, Rakin M, Vucurovic V (2009) Improvement of ethanol fermentation of corn Semolina hydrolyzates with immobilized yeast by medium supplementation. Food Technol Biotechnol 47:83–89

    CAS  Google Scholar 

  • Panagiotou G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115:425–434

    Article  PubMed  CAS  Google Scholar 

  • Parekh S, Wayman M (1986) Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnol Lett 8:597–600

    Article  CAS  Google Scholar 

  • Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102:10618–10624

    Article  PubMed  CAS  Google Scholar 

  • Pushalkar S, Rao KK (1998) Ethanol fermentation by a cellulolytic fungus Aspergillus terreus. World J Microbiol Biotechnol 14:289–291

    Article  CAS  Google Scholar 

  • Qi X, Zhang Y, Tu R, Lin Y, Li X, Wang Q (2011) High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. J Appl Microbiol 110:1584–1591

    Article  PubMed  CAS  Google Scholar 

  • Rebros M, Rosenberg M, Grosová Z et al (2009) Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl Biochem Biotechnol 158:561–570

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues TH, Rocha MV, de Macedo GR, Goncalves LR (2011) Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment. Appl Biochem Biotechnol 164:929–943

    Article  PubMed  CAS  Google Scholar 

  • Ruiz E, Romero I, Moya M, Sanchez S, Bravo V, Castro E (2007) Sugar fermentation by Fusarium oxysporum to produce ethanol. World J Microbiol Biotechnol 23:259–267

    Article  CAS  Google Scholar 

  • Ruiz HA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012) Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain—effect of process conditions. Fuels 95:528–536

    Article  CAS  Google Scholar 

  • Saharan RK, Sharma SC (2010) Correlation studies of trehalose with oxidative stress in ethanol stressed yeast Pachysolen tannophilus. Curr Res J Biol Sci 2:300–305

    CAS  Google Scholar 

  • Serrat M, Bermúdez IRC, Villa TG (2004) Polygalacturonase and ethanol production in Kluyveromyces marxianus, potential use of polygalacturonase in foodstuffs. Appl Biochem Biotechnol 117:49–64

    Article  PubMed  CAS  Google Scholar 

  • Shupe AM, Liu Shijie (2012) Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis. Appl Biochem Biotechnol 168:29–36

    Article  PubMed  CAS  Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC (2010) The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol 162:1306–1315

    Article  PubMed  CAS  Google Scholar 

  • Soyuduru D, Ergun M, Tosun A (2009) Application of a statistical technique to investigate calcium, sodium, and magnesium ion effect in yeast fermentation. Appl Biochem Biotechnol 152:326–333

    Article  PubMed  CAS  Google Scholar 

  • Sues A, Millati R, Edebo L, Taherzadeh MJ (2005) Ethanol production from hexoses, pentoses and dilute acid hydrolyzate by Mucor indicus. FEMS Yeast Res 5:669–676

    Article  PubMed  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90:374–380

    PubMed  CAS  Google Scholar 

  • Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature SpringerPlus 2012. 1:27. doi:10.1186/2193-1801-1-27

    Google Scholar 

  • Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147

    Article  Google Scholar 

  • Toyoda T, Ohtaguchi K (2008) Production of Ethanol from Lactose by Kluyveromyces lactis NBRC 1903. Thammasat Int J Sci Technol 13:30–35

    Google Scholar 

  • Vogel HC, Todaro CL (1996) Fermentation and biochemical engineering hand book, 2nd edn. Noyes publications, New Jersy, pp 122–160

    Google Scholar 

  • Watanabe I, Nakamura T, Shima J (2010) Strategy for simultaneous saccharification and fermentation using a respiratory-deficient mutant of Candida glabrata for bioethanol production. J Biosci Bioeng 110:176–179

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Widmer WW, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42:1614–1619

    Article  CAS  Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2:4

    Article  PubMed  Google Scholar 

  • Yong Q, Li X, Yuan Y, Lai C, Zhang N, Chu Q, Xu Y, Yu S (2012) An improved process of ethanol production from hemicellulose: bioconversion of undetoxified hemicellulosic hydrolyzate from steam-exploded corn stover with a domesticated Pichia stipitis. Appl Biochem Biotechnol 167:2330–2340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Binod, P., Sindhu, R., Pandey, A. (2013). The Alcohol Fermentation Step: The Most Common Ethanologenic Microorganisms Among Yeasts, Bacteria and Filamentous Fungi. In: Faraco, V. (eds) Lignocellulose Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37861-4_7

Download citation

Publish with us

Policies and ethics