Skip to main content
Log in

Corn steep liquor as a cost-effective nutrition adjunct in high-performanceZymomonas ethanol fermentations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ethanologenic bacteriumZymomonas mobilis has been demonstrated to possess several fermentation performance characteristics that are superior to yeast. In a recent survey conducted by the National Renewable Energy Laboratory (NREL),Zymomonas was selected as the most promising host for improvement by genetic engineering directed to pentose metabolism for the production of ethanol from lignocellulosic biomass and wastes. Minimization of costs associated with nutritional supplements and seed production is essential for economic large-scale production of fuel ethanol. Corn steep liquor (CSL) is a byproduct of corn wet-milling and has been used as a fermentation nutrient supplement in several different fermentations. This study employed pH-controlled batch fermenters to compare the growth and fermentation performance ofZ. mobilis in glucose media with whole and clarified corn steep liquor as sole nutrient source, and to determine minimal amounts of CSL required to sustain high-performance fermentation.

It was concluded that CSL can be used as a cost-effective single-source nutrition adjunct forZymomonas fermentations. Supplementation with inorganic nitrogen significantly reduced the requirement for CSL. Depending on the type of process and mode of operation, there can be a significant contribution of nutrients from the seed culture, and this would also reduce the requirement for CSL. Removal of the insolubles (40% of the total solids) from CSL did not detract significantly from its nutritional effectiveness. On an equal-volume basis, clarified CSL was 1.33 times more “effective” (in terms of cell mass yield and fermentation time) than whole CSL. For fermentations at sugar loading of >5% (w/v), the recommended level of supplementation with clarified CSL is 1.0% (v/v). Based on CSL at US $50/t, the cost associated with using clarified CSL at 1.0% (v/v) is 88¢/1000 L of medium and 5.3¢/gal of undenatured ethanol for fermentation of 10% (w/v) glucose. This cost compares favorably to estimates for using inorganic nutrients. The cost impact is reduced to 3.1¢/gal if there is a byproduct credit for selling the insolubles as animal feed at a price of about US $100/t. Therefore, the disposition of the CSL insolubles can significantly impact the calculations of cost associated with the use of CSL as a nutritional adjunct in large-scale fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keim, C. R. and Venkatasubramanian, K. (1989),TIBTECH, vol 7, Elsevier Science, UK, London, pp. 22–29.

    Google Scholar 

  2. Keim, C. R. (1983),Enzyme Microbiol. Technol. 5, 103–114.

    Article  CAS  Google Scholar 

  3. Lynd, L. R. (1990),Appl. Biochem. Biotechnol. 24/25, 695–719.

    Google Scholar 

  4. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  5. Skoog, K. and Hahn-Hägerdal, B. (1988),Enzyme Microbiol. Technol. 10, 66–88.

    Article  CAS  Google Scholar 

  6. McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC.,ACS Symposium Series 566, pp. 411–437.

    Google Scholar 

  7. Swings, J. and DeLey, J. (1977),Bacteriol. Rev. 41, 1–46.

    CAS  Google Scholar 

  8. Montenecourt, B. S. (1985), inBiology of Industrial Microorganisms, Demain, A. L. and Simon, N. A., eds., Benjamin/Cummings, Meno Park, CA, pp. 216–287.

    Google Scholar 

  9. Baratti, J. C. and Bu'Lock, J. D. (1986),Biotechnol. Adv. 4, 95–115.

    Article  CAS  Google Scholar 

  10. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biochem. Eng. 37–84.

  11. Lawford, H. G. and Stevnsborg, N. (1986),Biotechnol. Bioeng. Symp. 17, 209–219.

    Google Scholar 

  12. Lawford, H. G. and Ruggiero, A. (1990), inBioenergy (Proceedings 7th Canadian Bioenergy R&D Seminar), Hogan, E., ed., National Research Council of Canada, Ottawa, Canada, pp. 401–410.

    Google Scholar 

  13. Busche, R., Scott, C. D. Davison, B. H., and Lynd, L. R. (1992),Appl. Biochem. Biotechnol. 34/35, 395–417.

    Google Scholar 

  14. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993),Crit. Rev. Biotechnol. 13, 57–98.

    Article  CAS  Google Scholar 

  15. Lawford, H. G. (1988),Proceedings of VIII International Symposium on Alcohol Fuels, New Energy Development Organization, Tokyo, Japan, (November 13–16), pp. 21–28.

    Google Scholar 

  16. Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), inEnzymatic Conversion of Biomass for Fuels Production, M. E. Himmel, J. O. Baker, and R. A. Overend, eds., American Chemical Society, Washington, DC,ACS Symposium Series 566, pp. 342–362.

    Google Scholar 

  17. Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. K. (1995),Appl. Biochem. Biotechnol. 51/52, 527–536.

    Google Scholar 

  18. Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–211.

    Article  CAS  Google Scholar 

  19. Greasham, R. and Inamine, E. (1981), inManual of Industrial Microbiology and Biotechnology, Demain, A. L. and Solomon, N. A, eds., American Society for Microbiology, Washington, DC, pp. 41–48.

    Google Scholar 

  20. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996),Appl. Biochem. Biotechnol. 57/58, 741–761.

    Google Scholar 

  21. Belaïch, J. P. and Senez, J. C. (1965),J. Bacteriol. 89, 1195–1200.

    Google Scholar 

  22. Belaïch, J. P., Belaïch, A., and Simonpietri, P. (1972),J. Gen. Microbiol. 70, 179–185.

    Google Scholar 

  23. Lawford, H. G. and Stevnsborg, N. (1986),Biotechnol. Lett. 8, 345–350.

    Article  CAS  Google Scholar 

  24. Park, S. C., Kademi, A., and Baratti, J. C. (1993),Biotechnol. Lett. 15, 1179–1184.

    Article  CAS  Google Scholar 

  25. Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982),Appl. Environ. Microbiol. 44, 496–498.

    CAS  Google Scholar 

  26. Fein, J. E., Charley, R. C., Hopkins, K. A., Lavers, B., and Lawford, H. G. (1983),Biotechnol. Lett. 5, 1–6.

    CAS  Google Scholar 

  27. Nipkow, A., Beyeler, W., and Feichter, A. (1984),Appl. Microbiol. Biotechnol. 19, 237–240.

    Article  CAS  Google Scholar 

  28. Galani, I., Drainas, C., and Typas, M. A. (1985),Biotechnol. Lett. 7, 673–678.

    Article  CAS  Google Scholar 

  29. Anon (1975), “Properties and Uses of Feed Products from Corn Wet-Milling Operations.” Corn Refiners Association Inc., Washington, DC.

  30. Lawford, H. G. and Rousseau, J. D. (1996),Appl. Biochem. Biotechnol. 57/58, 307–326.

    Google Scholar 

  31. Lawford, H. G. (1988), inCanadian Power Alcohol Proceedings (CANPAC'88), Biomass Energy Institute of Canada, Winnipeg, Manitoba, pp. 245–251.

    Google Scholar 

  32. Beavan, M., Zawadzki, B., Droiniuk, R., Fein J. E., and Lawford, H. G. (1989),Appl. Biochem. Biotechnol. 20/21, 319–326.

    Google Scholar 

  33. Davison, B. H. and Scott, C. D. (1988),Appl. Biochem. Biotechnol. 18, 19–34.

    Article  CAS  Google Scholar 

  34. Webb, O. F., Davison, B. H., Scott, T. C., and Scott, C. D. (1994),Appl. Biochem. Biotechnol. 51/52, 559–568.

    Google Scholar 

  35. Amartey, S. and Jeffries, T. W. (1994),Biotechnol. Lett. 16, 211–214.

    Article  CAS  Google Scholar 

  36. Kadam, K. L., Hayward, T. K., and Phillippidis, G. P. (1995),ASME Solar Eng. 1, 339–347.

    Google Scholar 

  37. Beall, D. S., Ingram, L. O., Ben-Bassat, A., Doran, J. B., Fowler, D. E., Hall, R. G., and Wood, R. E. (1992),Biotechnol. Lett. 14, 857–862.

    Article  CAS  Google Scholar 

  38. Barbosa, M. de F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 1182–1184.

    Google Scholar 

  39. Grethlein, H. E. and Dill, T. (1993), SCA No. 58-1935-2-050, Agricultural Research Service, USDA, Philadelphia, PA.

  40. Asghari, A., Bothast, R. J., Doran, J. B., and Ingram, L. O. (1996),J. Ind. Microbiol. 16, 42–47.

    Article  CAS  Google Scholar 

  41. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997),Appl. Biochem. Biotechnol. (18thSymp.),63–65, 269.

    Google Scholar 

  42. Lawford, H. G., Holloway, P., and Ruggiero, A. (1988),Biotechnol. Lett. 10, 809–814.

    Article  CAS  Google Scholar 

  43. Lawford, H. G. and Ruggiero, A. (1990),Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  44. von Sivers, M., Zacchi, G., Olsson, L., and Hahn-Hägerdal, B. (1994),Biotechnol. Prog. 10, 555–560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Corn steep liquor as a cost-effective nutrition adjunct in high-performanceZymomonas ethanol fermentations. Appl Biochem Biotechnol 63, 287–304 (1997). https://doi.org/10.1007/BF02920431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920431

Index Entries

Navigation