Skip to main content

Plant–PGPR Interactions for Pest and Disease Resistance in Sustainable Agriculture

  • Chapter
  • First Online:
Bacteria in Agrobiology: Disease Management

Abstract

Plant-growth-promoting rhizobacteria (PGPR) are naturally occurring bacteria that colonize plant roots and benefit of plant system. Inoculation of crop plants with certain strains of PGPR at an early stage of development improves biomass production through direct effects on root and shoot growth. They help in increasing nitrogen fixation in legumes; help in promoting free-living nitrogen-fixing bacteria; increase supply of other nutrients, such as phosphorus, sulfur, iron, and copper; produce plant hormones; enhance other beneficial bacteria or fungi; control fungal and bacterial diseases; and help in controlling insect pests. During the interaction of PGPR with plant, it induces defense mechanisms against pest and diseases. The aim of this review is to describe PGPR modes of action and discuss with interaction of plants at molecular level for PGPR use in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Department of Plant Pathology, University of Florida. Elsevier Academic, Amsterdam, 635p

    Google Scholar 

  • Andrews JH (1990) Biological control in the phyllosphere: realistic goal or false hope? Can J Plant Pathol 12:300–307

    Article  Google Scholar 

  • Athauda SBP, Matsumoto K, Rajapaske S, Kuribayashi M, Kojima M, Kuomura-Yoshida N, Iwamatsu A, Shibata C, Inoue H, Takahashi K (2004) Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases. Biochem J 381:295–306

    Article  CAS  PubMed  Google Scholar 

  • Avni A, Edelman M, Rachailovich I, Aviv D, Fluhr R (1989) A point mutation in the glutathione peroxidase activity from Arabidopsis thaliana: molecular cloning and functional characterization. Eur J Biochem 216:579–588

    Google Scholar 

  • Bais HP, Sang-Wook P, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information super highway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco AG, Manero FJG (2008) In: Ahmad I, Pichtel J, Hayat S (eds) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). Wiley, Weinheim, pp 1–17

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Baskaran S, Sevarkodiyone S, Kumar PS, Alagarsamy N (2004) Predatory potential of spiders on some insect pests of Bhendi. Bionotes 6:109–110

    Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R (2004) Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot 23:835–843

    Article  Google Scholar 

  • Bhuvaneswari R (2005) Endophytic Bacillus mediated induced systemic resistance against bacterial blight (Xanthomonas axonopodis pv. malvacearum) and bollworm (Helicoverpa armigera) in cotton. M.Sc. (Agri.) Thesis, TNAU, Coimbatore, India, pp 86

    Google Scholar 

  • Bird DM, Opperman CH, Davies KG (2003) Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol 33:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Wadhams GH, Smart LE, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    Article  CAS  PubMed  Google Scholar 

  • Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Heliothis zeae (Boddie). J Invertebr Pathol 57:406–412

    Article  Google Scholar 

  • Bruinsma M, Ijdema H, Van Loon JJA, Dicke M (2008) Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Neth Entomol Soc 128:109–116

    CAS  Google Scholar 

  • Burr TJ, Caesar AM, Schrolh N (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2(1):1–20

    Article  Google Scholar 

  • Cho S, Shin S, Kim K, Kim Y, Eun M, Cho B (2004) Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells 18(3):390–395

    CAS  PubMed  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613

    Article  CAS  PubMed  Google Scholar 

  • Cooper WR, Goggin FL (2005) Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol Exp Appl 115:107–115

    Article  CAS  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Van Oosten VR, van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux AJ, van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18(9):923–937

    Article  PubMed  CAS  Google Scholar 

  • Dean RT, Fu S, Stocker MJ (1997) Davies Biochemistry and pathology of radical mediated protein oxidation. Biochem J 324:1–18

    CAS  PubMed  Google Scholar 

  • DeMeyer G, Audenaert K, Hofte M (1999) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • Dicke M, Bruin J (2001) Chemical information transfer between damaged and undamaged plants: back to the future. Biochem Syst Ecol 29:981–994

    Article  CAS  Google Scholar 

  • Dicke M, van Poecke RMP (2002) Signaling in plant-insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction: frontiers in molecular biology. Oxford University Press, Oxford, pp 289–316

    Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f.sp. vasinfectum. Mol Plant Microbe Interact 17:654–667

    Article  CAS  PubMed  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett JA, Williams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:355–1367

    Article  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    Article  CAS  Google Scholar 

  • Flavio H, Medeiros V, Ricardo M, Souza Fernanda C, Medeiros L, Huiming Z, Terry W, Paxton P, Henrique MF, Paré PW (2011) Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant Soil 347:327–337

    Article  CAS  Google Scholar 

  • Fraenkel G, Fallil F, Kumarasingh KS (1981) The feeding behaviour of the rice leaf folder, Cnaphalocrocis medinalis. Entomol Exp Appl 29:147–161

    Article  Google Scholar 

  • Garcia JL, Probanza A, Ramos B, Manero FJG (2001) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. J Plant Nutr Soil Sci 164:1–7

    Article  CAS  Google Scholar 

  • Giulivi C, Pacifici RE, Davies KJA (1994) Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch Biochem Biophys 3113:29–341

    Google Scholar 

  • Glandorf DCM, van der Sluis I, Anderson AJ, Bakker PAHM, Schippers B (1994) Agglutination, adherence, and root colonization by fluorescent pseudomonads. Appl Environ Microbiol 60:1726–1733

    CAS  PubMed  Google Scholar 

  • Glazebrook J, Chen WJ, Estes B, Chang HS, Nawrath C, Métraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Gupta A, Nair RV (2005) Variations in hosting beneficial plant-associated microorganisms by root (wilt)-diseased and field-tolerant coconut palms of West Coast Tall variety. Curr Sci 89(11):1922–1927

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grune T, Reinheckel T, Joshi M, Davies KJ (1995) Proteolysis in cultured liver epithelialcells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 270:2344–2351

    Article  CAS  PubMed  Google Scholar 

  • Gumede H (2008) The development of a putative microbial product for use in crop production. M.Sc. Thesis, Rhodes University, Grahamstown 6140, South Africa

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 1:1–13

    Article  CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Samiyappan R (2009a) Differential expression of pathogenesis-related proteins and defense enzymes in banana: interaction between endophytic bacteria Banana bunchy top virus and Pentalonia nigronervosa. Biocontrol Sci Tech 19(8):843–857

    Article  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009b) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51(1):16–25

    Article  CAS  Google Scholar 

  • Harris N, Taylor JE, Roberts JA (1994) Isolation of a mRNA encoding a nucleoside diphosphate kinase from tomato that is up-regulated by wounding. Plant Mol Biol 25:739–742

    Article  CAS  PubMed  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935–949

    Article  CAS  PubMed  Google Scholar 

  • Holland N, Belkind A, Holland D, Dick U, Edelman M (1998) Stress-responsive holoenzyme assembly in Nicotiana tabacum. EMBO J 18:1915–1918

    Google Scholar 

  • Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biol Sci 17:463–468

    Article  CAS  Google Scholar 

  • Jabaji-Hare S, Neate SM (2005) Nonpathogenic binucleate Rhizoctonia spp. and benzothiadiazole protect cotton seedlings against Rhizoctonia damping-off and Alternaria leaf spot in cotton. Phytopathology 95:1030–1036

    Article  PubMed  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting Rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 1(2):141–152

    Google Scholar 

  • Kamalakannan A, Shanmugam V (2009) Management approaches of maize downy mildew using biocontrol agents and plant extracts. Acta Phytopathol Ent Hung 44(2):255–266

    Article  Google Scholar 

  • Kandan A, Radja Commare R, Nandakumar R, Ramiah M, Raguchander T, Samiyappan R (2002) Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against Tomato spotted wilt virus in tomato. Fol Microbiol 47(2):121–129

    Article  CAS  Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag Sci 66:555–564

    Article  CAS  PubMed  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45:71–77

    Article  Google Scholar 

  • Kavitha PG, Jonathan EI, Sankari Meena K (2011) Antagonistic potential of Pseudomonas fluorescens against Meloidogyne incognita in tomato. Madras Agric J 97(10–12):399–401

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick TL, Rothrock CS (2001) Compendium of cotton diseases, vol 2. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Kloepper JW (1993) Plant-growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology. Marcel Dekker, New York, pp 255–273

    Google Scholar 

  • Kloepper JW (2003a) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) Abstracts and short papers. 6th International PGPR workshop, 5–10 Oct 2003, Indian Institute of Spices Research, Calicut, India, pp 81–92

    Google Scholar 

  • Kloepper JW (2003b) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) Abstracts and short papers. 6th International PGPR workshop, 5–10 Oct 2003, Indian Institute of Spices Research, Calicut, India, pp 81–92

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Station de pathologie vegetale et phyto-bacteriologie (ed) Proceedings of the 4th international conference on plant pathogenic bacteria, vol II. Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–43

    Article  Google Scholar 

  • Kloepper JW, Tuzun S, Kuc J (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351

    Article  Google Scholar 

  • Kloepper JW, Reddy SM, Rodriguez-Kabana R, Kenney DS, Kokalis-Burelle N, Ochoa NM (2004) Application for rhizobacteria in transplant production and yield enhancement. Acta Hortic 631:217–229

    Google Scholar 

  • Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced colonization of the wheat rhizosphere. FEMS Microbiol Let 225:227–233

    Article  CAS  Google Scholar 

  • Kumar T, Wahla V, Pandey P, Dubey RC, Maheshwari DK (2009) Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World J Microbiol Biotechnol 25:277–285

    Article  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin. Doi: 10.1007/978-3-642-18357-7_2

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. Hortic Sci 32:188–192

    Google Scholar 

  • Lee J (2005) A proteomic approach to identifying defense related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Ph.D thesis, Louisiana State University and Agricultural and Mechanical College, Korea, 73p

    Google Scholar 

  • Lorimer GH (1996) Molecular chaperones as facilitators of protein folding. Invest Ophthalmol Vis Sci 37:1048

    Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) In: Ramos J-L (ed) Pseudomonas, vol 1. Kluwer Academic/Plenum, New York, pp 403–430

    Google Scholar 

  • Maheshwari DK (ed) (2011) Plant growth and health promoting bacteria, Microbiology monographs (Springer series). Springer, Heidelberg, Germany, pp 99–116

    Google Scholar 

  • Marrs TA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:1–127

    Article  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Maurhofer M, Reimmann C, Sacherer SP, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against Tobacco necrosis virus. Phytopathology 88:678–684

    Article  CAS  PubMed  Google Scholar 

  • Meena B (2000) Induction of systemic resistance against late leaf spot of groundnut using fluorescent pseudomonads. Ph. D. Thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Mirica LM, Klinman JP (2008) The nature of O2 activation by the ethylene-forming enzyme ACC oxidase. Proc Natl Acad Sci USA 105:1814–1819

    Article  CAS  PubMed  Google Scholar 

  • Moisyadi S, Dharmasiri S, Harrington HM, Lukas TJ (1994) Characterization of a low molecular mass autophosphorylated protein in cultured sugarcane cells and its identifications as a nucleoside diphosphate kinase. Plant Physiol 104:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Monnerat RG, Batista AG, de Medeiros PT, Martins ES, Melatti VM, Praca LP, Dumas VF, Morinaga C, Demo C, Gomes ACM, Falcao R, Siqueira CB, Silva-Werneck JO, Berry C (2007) Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol Control 41:291–295

    Article  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDPkinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    Article  CAS  PubMed  Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307

    Article  PubMed  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2010) Focus on: Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327–337

    Google Scholar 

  • Novikova GV, Moshkov IE, Smith AR, Kulaeva ON, Hall MA (1999) The effect of ethylene and cytokinin on guanosine 59-triphosphate binding and protein phosphorylation in leaves of Arabidopsis thaliana. Planta 208:239–246

    Article  CAS  PubMed  Google Scholar 

  • O’farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro inter-relationship between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13(3):269–274

    Google Scholar 

  • Park DS, Lee SK, Lee JH, Song MY, Song SY, Kwak DY, Yeo US, Jeon NS, Park SK, Yi G, Song YC, Nam MH, Ku YC, Jeon JS (2007) The identification of candidate rice genes that confer resistance to the brown plant hopper (Nilaparvata lugens) through representational difference analysis. Theor Appl Genet 115:537–547

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S sub complexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269(10):7709–7718

    CAS  PubMed  Google Scholar 

  • Pickett JS, Rasmussen HB, Woodcock CM, Mathews M, Napier JA (2003) Solitary potential structures observed in the magneto sheath by the Cluster spacecraft, Nonlin. Proc Geophys 10:3–11

    Article  Google Scholar 

  • Pieterse CMJ, van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–269

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, van Loon LC, Pieterse CMJ (2005) Jasmonates signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    Google Scholar 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Acta Phytophyl Sin 25:209–212

    Google Scholar 

  • Radjacommare R, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bioformulation for the management of sheath blight and leaf folder in rice. Crop Prot 21:671–677

    Article  Google Scholar 

  • Rajinimala N, Rabindran R, Ramaih M, Nagarajan P, Varanavasiappan S (2003) PGPR mediatd resistance in bitter gourd against Bitter gourd yellow mosaic virus. In: Proceedings on the 6th international plant growth promoting rhizobacteria (PGPR) workshop, Calicut, Kerala, India, 5–10 Oct 2003, pp 548–552. (Abstracts and Short Papers)

    Google Scholar 

  • Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning heterologous expression and functional characterization of 5-epi-aristolochene-1,3-dihydrolase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f.sp. lycopersici. Plant Soil 239:55–68

    Article  CAS  Google Scholar 

  • Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesiam T, Domenech J, Gutierrez Manero FJ (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection and biotic elicitors. Phytopathology 98(4):451–457

    Article  CAS  PubMed  Google Scholar 

  • Reddy MS, Rodriguez-Kabana R, Kenney DS, Ryu CM, Zhang S, Yan Z, Martinez-Ochoa N, Kloepper JW (1999) Growth promotion and induced systemic resistance (ISR) mediated by a biological preparation. Phytopathology 89:S65 (Abstr)

    Google Scholar 

  • Reddy M, Anandaraj SJ, Eapen YR, Kloepper JW (eds) (2003) 6th International PGPR workshop, 5–10 Oct 2003, Indian Institute of Spices Research, Calicut, India pp 81–92

    Google Scholar 

  • Reymond P, Bodenhausen N, van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcriptional pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  CAS  PubMed  Google Scholar 

  • Roberts DP, Lohrke MS, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, De-Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soil-borne diseases of cucumber. Crop Prot 24:141–155

    Article  Google Scholar 

  • Rochester DE, Winer JA, Shah DM (1986) The structure and expression of maize genes encoding the major heat shock protein hsp70. EMBO J 5:451–458

    CAS  PubMed  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98

    Article  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011). Plant growth promoting rhizobacteria: a critical review. Life Sci Medic Res LSMR-21

    Google Scholar 

  • Sankari Meena K, Jonathan EI, Kavitha PG (2011) Efficacy of Pseudomonas fluorescens on the histopathological changes in tomato roots infested with root knot nematode, Meloidogyne incognita. Madras Agric J 97(10–12):396–398

    Google Scholar 

  • Santhi A, Sivakumar V (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 on tomato. J Biol Control 9:113–115

    Google Scholar 

  • Saravanakumar D, Muthumeena B, Lavanya N, Suresh S, Rajendran L, Raguchander T, Samiyappan R (2007a) Pseudomonas induced defense molecules in rice against leaf folder (Cnaphalocrocis medinalis) pest. Pest Manag Sci 63:714–721

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007b) PGPR induced defense responses in tea plants against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2008) Pseudomonas fluorescens mediated volatiles in rice plants enhancing natural enemy population against leaf fodder (Cnaphalocrocis medinalis) pest. J Appl Entomol 132:469–479

    Article  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol 54(2):273–286

    Article  Google Scholar 

  • Sarosh BR, Danielsson J, Meijer J (2009) Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea. J Plant Mol Biol 70(1–2):31–45

    Article  CAS  Google Scholar 

  • Saveetha K (2009) Interactive genomics and proteomics of plant growth promoting rhizobacteria (PGPR) for the management of major pests and diseases in rice. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

    Google Scholar 

  • Saveetha K, Karthiba L, Raveendran M, Saravanakumar D, Suresh S, Raguchander T, Balasubramanian P, Samiyappan R (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7:47

    Article  CAS  Google Scholar 

  • Schoonhoven LM, Jermy T, van Loon JJA (1998) Insect-plant biology. From physiology to evolution. Chapman and Hall, London, pp 240–245

    Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants – new avenues for phytochemicals. J Phytol 2(7):91–100

    Google Scholar 

  • Senthilraja G, Anand T, Durairaj C, Raguchander T, Samiyappan R (2010) Chitin-based bioformulation of Beauveria bassiana and Pseudomonas fluorescens for improved control of leaf-miner and collar rot in groundnut. Crop Prot 29:1003–1010

    Article  Google Scholar 

  • Shoresh M, Harman GE (2008) Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays. Mol Genet Genomics 147:2147–2163

    CAS  Google Scholar 

  • Siddiqui Z (2006) PGPR: prospective biocontrol agents of plant pathogens. PGPR: biocontrol and biofertilization. Springer, Heidelberg, pp 111–142

    Google Scholar 

  • Sikora RA (1988) Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med Fac Landbouww Rijksuniv Gent 53(2b):867–878

    Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Article  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125

    Article  Google Scholar 

  • Stock CA, Mcloughlin TJ, Klein JA, Adang M (1990) Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    Article  CAS  Google Scholar 

  • Stone EC, Cummings AC, McDonald FB, Heikkila BC, Lal N, Webber WR (2005) Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309(57):2017–2020

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Suslow TV (1980) Increased growth and yield of sugar beets by seed treatment with selected Pseudomonas spp. and bacterial culture preservation in frozen or dry film of cellulose methyl ether. Ph. D. Thesis, University of California, Los Angeles, CA

    Google Scholar 

  • Swarnakumari N, Lakshmanan PL, Samiyappan R (1999) Screening of different isolates of Pseudomonas fluorescens against rice-root nematode, Hirschmanniella oryzae. In: International seminar on integrated pest management, Hyderabad, India, p 102

    Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688

    Article  CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (2001) Jasmonate mediated induced plant resistance affects a community of herbivores. Ecol Ent 26:213–324

    Article  Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Troxler J, Berling CH, Moenne-Loccoz Y, Keel C, Defago G (1997) Interactions between the biocontrol agent Pseudomonas fluorescens CHA0 and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71

    Article  Google Scholar 

  • Umashankari J, Sekar C (2011) Comparative evaluation of different bioformulations of PGPR cells on the enhancement of induced systemic resistance (ISR) in rice P. oryzae pathosystem under upland condition. Curr Bot 2(3):12–17

    Google Scholar 

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp strain WCS 417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot J, Chartier Y, Meyer Y (1999) In vivo characterization of a Thioredoxin H target protein defines a new peroxiredoxin family. J Biol Chem 274(28):19714–19722

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vieira AA, Oliveira MGDA, Jose IC, Piovesan ND, Tavares S, Rezende DE, Moreira MA, de Barros EG (2001) Biochemical evaluation of lipoxygenase pathway of soybean plants submitted to wounding. R Bras Fisio Veg 13:1–12

    Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum Went. in sugarcane. Proc Sugar Tech Assoc India 61:24–39

    Google Scholar 

  • Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defense against the anthracnose pathogen in Mango. World J Microbiol Biotechnol 20:235–244

    Article  CAS  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez D, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenyl propanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26

    Article  PubMed  CAS  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104(42):16402–16409

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Tytgat J (2004) Evolutionary epitopes of Hsp90 and p23: implications for their interaction. FASEB J 18:940–947

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Baumann A, Jaekel K, Marbach I, Engelberg D, Frohnmeyer H (1999) UV-responsive genes of Arabidopsis revealed by similarity to the Gcn4- mediated UV response in yeast. J Biol Chem 274:17017–17024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Saravanakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramjegathesh, R., Samiyappan, R., Raguchander, T., Prabakar, K., Saravanakumar, D. (2013). Plant–PGPR Interactions for Pest and Disease Resistance in Sustainable Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_11

Download citation

Publish with us

Policies and ethics