Skip to main content

Abstract

Lettuce (Lactuca sativa) is cultivated extensively as a salad crop. Germplasm collections of wild and cultivated Lactuca species are important resources of biodiverse genetic material for plant breeding, with accurate details of the origin and characteristics of such material being essential. Lettuce has been crossed sexually with several wild species with the aim of introgressing genes, such as those for virus and fungal resistance, into the cultivated crop. Current molecular techniques play a key role at the nuclear and organelle levels to identify the most relevant germplasm, with its agronomically important genes, for incorporation into breeding programs. Somatic cell approaches that center upon robust plant regeneration systems from cells and tissues provide a basis for exposure of somaclonal variation and the generation of transgenic and somatic hybrid and cybrid plants. Transformation procedures, especially using Agrobacterium to introduce genes into target cultivars of lettuce, have enabled a range of genetic characteristics to be expressed in lettuce, especially genes for improved nutrition, human health and agronomic performance. Consideration needs to be given to the release of genes from the cultivated lettuce into wild species, with modeling experiments being relevant to predict gene flow. Future demand for leafy vegetables will necessitate ongoing genetic manipulation of lettuce through integration of conventional breeding, somatic cell approaches and molecular technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argyris J, Dahal P, Truco MJ, Ochoa O, Still DW, Michelmore RW, Bradford KJ (2008) Genetic analysis of lettuce seed thermoinhibition. In: Proceedings of 4th international symposium on seed, transplant and stand establishment of horticultural crops – translating seed and seedling physiology into technology. Acta Hortic 782:23–33

    Google Scholar 

  • Barak JD, Gilbertson RL (2003) Genetic diversity of Xanthomonas campestris pv. vitians, the causal agent of leafspot of lettuce. Phytopathology 93:596–603

    Article  PubMed  CAS  Google Scholar 

  • Beharav A, Lewinsohn D, Lebeda A, Nevo E (2006) New wild Lactuca genetic resources with resistance against Bremia lactucae. Genet Resour Crop Evol 53:467–474

    Article  Google Scholar 

  • Chin DB, Arroyo-Garcia R, Ochoa OE, Kesseli RV, Lavelle DO, Michelmore RW (2001) Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics 157:831–849

    PubMed  CAS  Google Scholar 

  • Cho DW, Park YD, Chung KH (2005) Agrobacterium-mediated transformation of lettuce with terpene synthase gene. J Kor Soc Hortic Sci 46:169–175

    CAS  Google Scholar 

  • Davey MR, Anthony P, Van Hooff P, Power JB, Lowe KC (2007) Lettuce. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 59, Transgenic crops IV. Springer, Berlin, Germany, pp 221–249

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2008) Leafy vegetables. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 6, Transgenic vegetable crops. Wiley-Blackwell, Chichester, UK, pp 217–248

    Google Scholar 

  • de Vries IM (1997) Origin and domestication of Lactuca sativa L. Genet Resour Crop Evol 171:233–248

    Google Scholar 

  • Deng XL, Chang JL, He J, He GC (2006) Transformation of lettuce with FMDV epitopes fused gene mediated by Agrobacterium. Wuhan Zhiweuxue Yanjiu 24:476–479

    CAS  Google Scholar 

  • Deng XL, Dhou Y, Chang JL (2007) Establishment of genetic transformation system and transgenic studies in lettuce (Lactuca sativa var. capatata). Acta Bot Yunnan 29:98–102

    CAS  Google Scholar 

  • Dhingra A, Folta KM (2005) Amplification, sequencing and annotation of plastomes. Genomics 6:176

    Article  PubMed  Google Scholar 

  • Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, de Capdeville G, Aragao FJL (2006) Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol 55:187–193

    Article  CAS  Google Scholar 

  • Dolezalova I, Lebeda A, Tiefenbachova P, Kristkova E (2004) Taxonomic reconsideration of some Lactuca spp. germplasm maintained in world bank collections. In: 4th international symposium on taxonomy of cultivated plants, Toronto, Canada, 11–17 Aug 2002, pp 193–201

    Google Scholar 

  • Doyle MP, Erickson MC (2007) The problems with fresh produce: an overview. J Appl Microbiol 105:317–330

    Article  Google Scholar 

  • FAOSTAT website (2003) FAO database. http://apps.fao.org/

  • Frijters ACJ, Zhang Z, Van Damme M, Wang GL, Ronald PC, Michelmore RW (1997) Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce. Theor Appl Genet 94:390–399

    Article  CAS  Google Scholar 

  • Giannino D, Nicolodi C, Testone G, Di Giacomo MA, Iannelli MA, Frugis G, Mariotti D (2008a) Pollen-mediated transgene flow in lettuce (Lactuca sativa L.). Plant Breed 127:308–314

    Article  CAS  Google Scholar 

  • Giannino D, Nicolodi C, Testone G, Frugis G, Pace E, Santamaria P, Guardasole M, Mariotti D (2008b) The expression of asparagines synthase A from E. coli affects the nitrogen status in leaves of lettuce (Lactuca sativa L.) and enhances vegetative growth. Euphytica 162:11–22

    Article  CAS  Google Scholar 

  • Gibson GD, Olivas N, Salm P (2007) Lettuce breeding method. International Patent Application No PCT/US2007/014063, dated 15 June 2007

    Google Scholar 

  • Hayes RJ, Ryder EJ (2007) Introgression of novel alleles for partial resistance to big vein disease from Lactuca virosa into cultivated lettuce. HortScience 42:35–39

    CAS  Google Scholar 

  • Hayes RJ, Wintermantel WM, Nicely PA, Ryder EJ (2006) Host resistance to Mirafiori lettuce big-vein virus and lettuce big-vein associated virus and virus sequence diversity and frequency in California. Plant Dis 90:233–239

    Article  CAS  Google Scholar 

  • Hayes RJ, Ryder EJ, Wintermantel WM (2008) Genetic variation for big-vein symptom expression and resistance to Mirafiori lettuce big-vein virus in Lactuca virosa L., a wild relative of cultivated lettuce. Euphytica 164:493–500

    Article  Google Scholar 

  • Hooftman DAP, Oostermeijer JGB, Jacobs MMJ, den Nijs HCM (2005) Demographic vital rates determine the performance advantage of crop-wild hybrids in lettuce. J Appl Ecol 42:1086–1095

    Article  Google Scholar 

  • Hooftman DAP, Nieuwenhuis BPS, Posthuma KI, Oostermeijer JGB, den NIjs HJCM (2007a) Introgression potential of downy mildew resistance from lettuce to Lactuca serriola and its relevance for plant fitness. Basic Appl Ecol 8:135–146

    Article  Google Scholar 

  • Hooftman DAP, Jong MJD, Oostermeijer JGB, den Nijs HJCM (2007b) Modelling the long-term consequences of crop-wild relative hybridization: a case study using four generations of hybrids. J Appl Ecol 44:1035–1045

    Article  Google Scholar 

  • Hooftman DAP, Gerard J, Oostermeijer B, Marquard E, den Nijs HJCM (2008) Modelling the consequences of crop-wild relative gene flow: a sensitivity analysis of the effects of outcrossing rates and hybrid vigour breakdown in Lactuca. J Appl Ecol 45:1094–1103

    Article  Google Scholar 

  • Hu JG, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235

    Article  CAS  Google Scholar 

  • Jansen J, Verbakel H, Peleman J, van Hintum TJL (2006) A note on the measurement of genetic diversity within genebank accessions of lettuce (Lactuca sativa L.) using AFLP markers. Theor Appl Genet 112:554–561

    Article  PubMed  CAS  Google Scholar 

  • Jeuken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401

    Article  PubMed  CAS  Google Scholar 

  • Jeuken M, van Wijk R, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F-2 populations. Theor Appl Genet 103:638–647

    Article  CAS  Google Scholar 

  • Jeuken MJW, Pelgrom K, Stam P, Lindhout P (2008) Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F-2 population. Theor Appl Genet 116:845–857

    Article  PubMed  CAS  Google Scholar 

  • Joh LD, Wroblewski T, Ewing NN, VanderGheynst JS (2005) High-level expression of recombinant protein in lettuce. Biotechnol Bioeng 91:861–871

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Okumura S, Hattori M, Tomizawa K (2004) The complete genome sequence of the Lactuca sativa (lettuce) chloroplast. Plant Cell Physiol 45:S39

    Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kawazu Y, Fujiyama R, Sugiyanta K, Sasaya T (2006) Transgenic lettuce line with resistance to both lettuce big-vein associated virus and Mirafiori lettuce virus. J Am Soc Hortic Sci 131:760–763

    CAS  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    PubMed  CAS  Google Scholar 

  • Kim BK, Park SY, Jeon BY, Hwang DY, Min BW (2004) Metabolic engineering increased vitamin C levels in lettuce by overexpression of a L-gulono-gamma-lactone oxidase. J Kor Soc Hortic Sci 45:16–20

    CAS  Google Scholar 

  • Kim YS, Kim BG, Kim TG, Kang TJ, Yang MS (2006) Expression of cholera toxin subunit in transgenic lettuce (Lactuca sativa L.) using Agrobacterium-mediated transformation system. Plant Cell Tiss Org Cult 87:203–210

    Article  CAS  Google Scholar 

  • Kim TG, Kim MY, Kim BG, Kang TJ, Kim YS, Jang YS, Arntzen CJ, Yang MS (2007) Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Express Purif 51:22–27

    Article  CAS  Google Scholar 

  • Koopman WJM, Guetta E, van de Wiel CCM, Vosman B, van den Berg RG (1998) Phylogenetic relationships among Lactuca (asteraceae) species and related genera based on ITS-1 DNA sequences. Am J Bot 85:1517–1530

    Article  PubMed  CAS  Google Scholar 

  • Kristkova E, Dolezalova I, Lebeda A, Vinter V, Novotna A (2008) Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. HortScience 35:113–129

    Google Scholar 

  • Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major gene cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894

    Article  PubMed  CAS  Google Scholar 

  • Kuang H, Ochoa OE, Nevo E, Michelmore RW (2006) The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions at the RGC2 locus. Plant J 47:38–48

    Article  PubMed  CAS  Google Scholar 

  • Kuang HH, van Eck HJ, Sicard D, Michelmore R, Nevo E (2008) Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics 178:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Lebeda A, Petrzelova I (2004) Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathol 53:316–324

    Article  Google Scholar 

  • Lebeda A, Dolezalova I, Kristkova E, Mieslerova B (2001) Biodiversity and ecogeography of wild Lactuca spp. in some European countries. Genet Resour Crop Evol 48:153–164

    Article  Google Scholar 

  • Lebeda A, Dolezalova I, Ferakova V, Astley D (2004) Geographical distribution of wild Lactuca species (Asteraceae, Lactuceae). Bot Rev 70:328–356

    Article  Google Scholar 

  • Lebeda A, Sedlarova M, Lynn J, Pink DAC (2006) Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa × L. serriola hybrids and Bremia lactucae. Eur J Plant Pathol 115:431–441

    Article  Google Scholar 

  • Lebeda A, Dolezalova I, Kristkova E, Dehmer KJ, Astley D, van de Weil CCM, van Treuren R (2007) Acquisition and ecological characterization of Lactuca serriola L. germplasm collected in the Czech Republic, Germany, The Netherlands and United Kingdom. Genet Resour Crop Evol 54:555–562

    Article  Google Scholar 

  • Lee ZA, Kim HY, Chung KH, Park YD (2004) Introduction of two types of human ferritin gene into lettuce plants. J Kor Soc Hortic Sci 45:330–335

    CAS  Google Scholar 

  • Lee ZA, Cho YG, Kim SH, Park YD (2005) Development of transgenic lettuce plants with rice ferritin gene. J Kor Soc Hortic Sci 46:351–355

    CAS  Google Scholar 

  • Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing gamma-tocopherol level in lettuce (Lactuca sativa L.). Mol Cells 24:301–306

    PubMed  CAS  Google Scholar 

  • Lelivelt CLC, McCabe MS, Newell CA, deSnoo CB, van Dun KMP, Birch-Machin I, Gray JC, Mills KHG, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  PubMed  CAS  Google Scholar 

  • Lucarini M, Lanzi S, d’Evoli L, Aguzzi A, Lombardi-Boccia G (2006) Intake of vitamin A and carotenoids from the Italian population – results of an Italian total diet study. Int J Vit Nutr Res 76:103–109

    Google Scholar 

  • Maisonneuve B (2003) Lactuca virosa, a source of disease resistance genes for lettuce breeding: results and difficulties for gene introgression. In: van Hintum ThJL, Lebeda A, Pink D, Schut JW (eds) Eucarpia leafy vegetables conference, Noordwijkerhout, Netherlands, 19–21 Mar 2003, pp 61–67

    Google Scholar 

  • Markovic Z, Zdravkovic J, Damjanovic M, Zdravkovic M, Djordjevic R, Zecevic B (2007) Diversity of vegetable crops in Serbia and Montenegro. In: Proceedings of 3rd Balkan symposium on vegetables and potatoes. Acta Hortic 729: 53–56

    Google Scholar 

  • Matoba H, Mizutani T, Nagano K, Hoshi Y, Uchimiya H (2007) Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas 144:235–243

    Article  PubMed  Google Scholar 

  • Mazier M, Botton E, Flamain F, Blouchet JP, Courtial B, Chupeau MC, Chupeau Y, Maisonneuve B, Lucas H (2007) Successful gene tagging in lettuce with the Tnt1 retrotransposon from tobacco. Plant Physiol 144:18–31

    Article  PubMed  CAS  Google Scholar 

  • McCreight JD (2008) Potential sources of genetic resistance in Lactuca spp. to the lettuce aphid Nasanovia ribisnigri (Mosely) (Homotera: Aphididae). HortScience 43:1355–1358

    Google Scholar 

  • Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998) Receptor-like genes in the major resistance locus of lettuce are subject to divergent evolution. Plant Cell 10:1833–1846

    Article  PubMed  CAS  Google Scholar 

  • Michelmore R, Wong J (2008) Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. Eur J Plant Pathol 122:19–30

    Article  CAS  Google Scholar 

  • Mou BQ (2005) Genetic variation of beta-carotene and lutein contents in lettuce. J Am Soc Hortic Sci 130:870–876

    CAS  Google Scholar 

  • Navarro JA, Torok VA, Vetten HJ, Pallas V (2005a) Genetic variability in the coat protein genes of lettuce big-vein associated virus and Mirafiori lettuce big-vein virus. Arch Virol 150:681–694

    Article  PubMed  CAS  Google Scholar 

  • Navarro JA, Botella F, Marhuenda A, Sastre P, Sanchez-Pina M, Pallas V (2005b) Identification and partial characterisation of lettuce big-vein associated virus and Mirafiori lettuce big-vein virus in common weeds found amongst Spanish lettuce crops and their role in lettuce big-vein disease transmission. Eur J Plant Pathol 113:25–34

    Article  Google Scholar 

  • Negrouk V, Eisner G, Lee HI, Han KP, Taylor D, Wong HC (2005) Highly efficient transient expression of functional recombinant antibodies in lettuce. Plant Sci 169:433–438

    Article  CAS  Google Scholar 

  • Park BJ, Liu ZC, Kanno A, Kameya T (2005) Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regul 45:165–171

    Article  CAS  Google Scholar 

  • Plocik A, Layden J, Kesseli R (2004) Comparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce and chicory. Mol Phylogenet 31:153–163

    Article  CAS  Google Scholar 

  • Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Intersimple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor Appl Genet 97:515–519

    Article  CAS  Google Scholar 

  • Ryder EJ (1999) Lettuce, endive and chicory – crop production, Science in Horticulture Series. CABI, Wallingford, UK

    Google Scholar 

  • Ryder EJ (2001) Current and future issues in lettuce breeding. In: Janick J (ed) Plant breeding reviews, vol 20. Wiley, San Francisco, USA, pp 105–134

    Google Scholar 

  • Ryder EJ, Kim ZH, Waycott W (1999) Inheritance and epistasis studies of chlorophyll deficiency in lettuce. J Am Soc Hortic Sci 124:636–640

    CAS  Google Scholar 

  • Salehi M, Izadpanah K, Nejat N, Siampour M (2007) Partial characterization of phytoplasmas associated with lettuce and wild lettuce phyllodies in Iran. Plant Pathol 56:669–676

    Article  CAS  Google Scholar 

  • Sedlarova M, Luhova L, Petrivalsky M, Lebeda A (2007) Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiol Biochem 45:607–616

    Article  PubMed  CAS  Google Scholar 

  • Sicard D, Woo SS, Arroya-Garcia R, Ochoa O, Nguyen D, Korol A, Nevo E, Michelmore R (1999) Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theor Appl Genet 99:405–418

    Article  CAS  Google Scholar 

  • Simko I, Hu JG (2008) Population structure in cultivated lettuce and its impact on association mapping. J Am Soc Hortic Sci 133:61–68

    Google Scholar 

  • Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, vañt Westende W, Hooftman DAP, den Nijs HCM, Flavells AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112:517–527

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Watanabe S, Sano T, Ma B, Kamada H, Ezura H (2007) Heterologous expression of the mutated melon ethylene receptor gene Cm-ERS1/H70A produces stable sterility in transgenic lettuce (Lactuca sativa). J Plant Physiol 164:514–520

    Article  PubMed  CAS  Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am J Bot 94:302–312

    Article  PubMed  CAS  Google Scholar 

  • Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J (2007) A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115:735–746

    Article  PubMed  CAS  Google Scholar 

  • Van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome 42:139–149

    PubMed  Google Scholar 

  • Vanjildorj E, Bae TW, Riu KZ, Kim SY, Lee HY (2005) Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell Tiss Org Cult 83:41–50

    Article  CAS  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3:739–758

    Article  PubMed  CAS  Google Scholar 

  • Waycott W, Fort SB, Ryder EJ, Michelmore RW (1999) Mapping morphological genes relative to molecular markers in lettuce (Lactuca sativa L.). Heredity 82:245–251

    Article  PubMed  CAS  Google Scholar 

  • Witsenboer H, Vogel J, Michelmore RW (1997) Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936

    Article  PubMed  CAS  Google Scholar 

  • Zdravkovic J, Stankovic L, Stevanovic D, Duzaman E, Tuzel Y (2003) Possibilities of using wild lettuce forms originating from spontaneous Yugoslav flora in the selection for virus diseases of Lactuca sativa L. In: Proceedings of international symposium on sustainable use of plant biodiversity to promote new opportunities for horticultural production development, 6–9 Nov 2001, Antalya, Turkey, pp 243–245

    Google Scholar 

  • Zhang FZ, Wagstaff C, Rae AM, Sihota AK, Keevil CW, Rothwell SD, Clarkson GJJ, Michelmore RW, Truco MJ, Dixon MS, Taylor G (2007) QTLs for shelf life in lettuce co-locate with those for leaf biophysical properties but not with those for leaf developmental traits. J Exp Bot 58:1433–1449

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Davey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davey, M.R., Anthony, P. (2011). Lactuca. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20450-0_8

Download citation

Publish with us

Policies and ethics