Skip to main content

Analysis of Early Development in the Zebrafish Embryo

  • Chapter
Early Embryonic Development of Animals

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 18))

Abstract

The zebrafish (Brachydanio rerio), a small fresh water fish native to rivers of northeast India, has long been a favorite of tropical fish fanciers. Within the past few years, it has also become an organism of great interest to vertebrate embryologists. The potential of the zebrafish as an effective experimental system can be traced to the work of G. Streisinger who recognized that the organism was highly suited to genetic analysis (Streisinger et al. 1981). After his untimely death, the development of the system was continued at the University of Oregon, and more recently, at many laboratories in the United States and Europe. The result has been a productive investigation of the embryology, genetics, neurobiology, and molecular biology of the zebrafish embryo (reviewed most recently in Kimmel and Warga 1988; Kimmel 1989; Ekker and Akimenko 1991; Fulwiler and Gilbert 1991). In this review, I will attempt to summarize what is known about the early development, genetics, and molecular biology of the zebrafish. Development of the nervous system has been more intensively investigated than any other aspect of embryogenesis in this organism. This subject has been reviewed recently (Eisen 1991) and will not be covered in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong JB, Graveson AC (1988) Progressive patterning precedes somite segmentation in the Mexican axolotl (Abystoma mexicanum). Dev Biol 126: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Ballard WW (1966a) The role of the cellular envelope in the morphogenetic movements of teleost embryos. J Exp Zool 161: 193–200

    Article  Google Scholar 

  • Ballard WW (1966b) Origin of the hypoblast in Salmo. I. Does the blastodisc edge turn inward? J Exp Zool 161: 201–210

    Article  Google Scholar 

  • Ballard WW (1966c) Origin of the hypoblast in Salmo. II. Outward movements of deep central cells. J Exp Zool 161: 211–220

    Article  Google Scholar 

  • Ballard WW (1973) Morphogenetic movements in Salmo gairdneri Richardson. J Exp Zool 184: 27–48

    Article  Google Scholar 

  • Balling R, Deutsch U, Gruss P (1988) Undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax-1. Cell 55: 531–535

    Google Scholar 

  • Baumgartner S, Bopp D, Burri M, Noll M (1987) Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. Genes Dev 1: 1247–1267

    Article  PubMed  CAS  Google Scholar 

  • Beams HW, Kessel RG (1976) Cytokinesis: a comparative study of cytoplasmic division in animal cells. Am Sci 64: 279–290

    PubMed  CAS  Google Scholar 

  • Beams HW, Kessel RG, Shih CY, Tung HN (1985) Scanning electron microsocopic studies on blastodisc formation in the zebrafish, Brachydanio rerio. J Morphol 184: 41–50

    Article  Google Scholar 

  • Beddington R (1986) Analysis of tissue fate and prospective potency in the egg cylinder. In: Rossant J, Pedersen RA (eds) Experimental approaches to mammalian development. Cambridge Univ Press, New York

    Google Scholar 

  • Betchaku T, Trinkaus JP (1978) Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncitial and yolk cytoplasmic layers of Fundulus before and after epiboly. J Exp Zool 206: 381–426

    Article  PubMed  CAS  Google Scholar 

  • Boncinelli E, Simeone A, Acampora D, Mavilio F (1991) Hox gene activation by retinoic acid. Trends Genet 7: 329–334

    Google Scholar 

  • Bopp D, Burri M, Baumgartner S, Frigerio G, and Noll M (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47: 1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Bopp D, Jamet E, Baumgartner S, Burri M, Noll M (1989) Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro. EMBO J 8: 3447–3457

    PubMed  CAS  Google Scholar 

  • Bradley RS, Brown AMC (1990) The proto-oncogene int-I encodes a secreted protein associated with the extracellular matrix. EMBO J 9: 1569–1990

    PubMed  CAS  Google Scholar 

  • Brem G, Brenig B, Horstgen-Schwark G, Winnacker EL (1988) Gene transfer in tilapia (Oreochromis niloticus). Aquaculture 68: 209–219

    Article  CAS  Google Scholar 

  • Buono RJ, Linser PL (1991) Transgenic zebrafish by electroporation. Bio-Rad US/ EG Bull 1354

    Google Scholar 

  • Burri M, Tromvoudis Y, Bopp D, Frigerio G, Noll M (1989) Conservation of the paired domain in metazoans and its structure in three isolated human genes. EMBO J 8: 1183–1190

    PubMed  CAS  Google Scholar 

  • Chakrabarti S, Streisinger G, Singer F, Walker C (1983) Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103: 109–123

    PubMed  CAS  Google Scholar 

  • Chesley P (1935) Development of the short-tailed mutant in the house mouse. J Exp Zool 70: 429–435

    Article  Google Scholar 

  • Chong SSC, Vielkind JR (1989) Expression and fate of CAT reporter gene microinjected into fertilized medaka (Oryzias latipes) eggs in the form of plasmid DNA, recombinant phage particles, and its DNA. Theor Appl Genet 78: 369–380

    Article  CAS  Google Scholar 

  • Chourrout D, Guyomard R, Houdebine L (1986) High efficiency gene transfer in rainbow trout (Salmo gairdneri Rich.) by microinjection in the egg cytoplasm. Aquaculture 51: 143–150.

    Article  CAS  Google Scholar 

  • Coleman KG, Poole SJ, Weir MP, Soeller WC, Kornberg TB (1987) The invected gene of Drosophila: sequence analysis and expression studies reveal a close kinship to the engrailed gene. Genes Dev 1: 19–28

    Article  PubMed  CAS  Google Scholar 

  • Culp P, Nusslein-Volhard C, Hopkins N (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci USA 88: 7953–7957

    Article  PubMed  CAS  Google Scholar 

  • Dale L, Slack JMW (1987a) Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100: 279–295

    PubMed  CAS  Google Scholar 

  • Dale L, Slack JMW (1987b) Fate map for the 32-cell stage of Xenopus laevis. Development 99: 527–551

    PubMed  CAS  Google Scholar 

  • Davidson D, Graham E, Sime C, Hill R (1988) A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. Development 104: 305–316

    PubMed  CAS  Google Scholar 

  • Davidson EH (1991) Spatial mechanisms of gene regulation in metazoan embryos. Development 113: 1–26

    PubMed  CAS  Google Scholar 

  • Davis CA, Joyner AL (1988) Expression patterns of the homeo box-containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev 2: 1736–1744

    Article  PubMed  CAS  Google Scholar 

  • Davis CA, Noble-Topham SE, Rossant J, Joyner AL (1988) Expression of the homeobox-containing gene EN-2 delineates a specific region of the developing mouse brain. Genes Dev 2: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Davis CA, Holmyard DP, Millen KJ, Joyner A (1991) Examining pattern formation in mouse, chicken, and frog embryos with an En-specific antiserum. Development 111: 287–298

    PubMed  CAS  Google Scholar 

  • Dollé P, Izpisua-Belmonte J-C, Falkenstein H, Renucci A, Duboule D (1989) Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 342: 767–772

    Article  PubMed  Google Scholar 

  • Drake JC (1969) Mutagenic mechanisms. Annu Rev Genet 61: 247–268

    Article  Google Scholar 

  • Dressler GR, Gruss P (1989) Anterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear order along the chromosome. Differentiation 41: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Dressler GR, Deutsch U, Balling R, Simon D, Guenet J-L, Gruss P (1988) Murine genes with homology to Drosophila segmentation genes. Development 104: 181–186

    Google Scholar 

  • Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax-2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109: 787–795

    Google Scholar 

  • Duboule D, Dolle P (1989) The structure and functional organization of the murine Hox gene family resembles that of Drosophila homeotic genes. EMBO J 8: 1497–1505

    PubMed  CAS  Google Scholar 

  • Dunham RA (1990) Genetic engineering in aquaculture AgBiotech News Info 22: 401–406

    Google Scholar 

  • Dunham RA, Eash J, Askins J, Townes TM (1987) Transfer of the metallothioneinhuman growth hormone fusion gene into channel catfish. Trans Am Fisheries Soc 116: 87–91

    Article  CAS  Google Scholar 

  • Eiken HG, NjOlstad PR, Molven A, Fjose A (1987) A zebrafish homeoboxcontaining gene with embryonic transcription. Bioch Biophys Res Comm 149: 1165–1171

    Article  CAS  Google Scholar 

  • Eisen JS (1991) Developmental neurobiology of the zebrafish. J Neurosci 11: 311317

    Google Scholar 

  • Eisen JS, Pike SH (1991) The spt-1 mutation alters segmental arrangement and axonal development of identified neurons in the spinal cord of embryonic zebrafish. J Neurosci 10: 34–43

    Google Scholar 

  • Ekker M, Akimenko M-A (1991) Embryology and genetics of the zebrafish, Brachydanio rerio. Int J Biol Med 7: 553–560

    Google Scholar 

  • Elsdale T, Pearson M, Whitehead M (1976) Abnormalities in somite segmentation following heat shock to Xenopus embryos. J Embryol Exp Morphol 35: 625635

    Google Scholar 

  • Endo A, Ingalls TH (1968) Chromosomes of the zebra fish. A model for cytogenic, embryologic, and ecologic study. J Hered 59: 382–384

    Google Scholar 

  • Felsenfeld AL, Walker C, Westerfield M, Kimmel CB, Streisinger G (1990) Mutations affecting skeletal muscle myofibril structure in the zebrafish. Development 108: 443–459

    PubMed  CAS  Google Scholar 

  • Felsenfeld AL, Curry M, Kimmel CB (1991) The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev Biol 148: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homeobox-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313: 284–289

    Article  PubMed  CAS  Google Scholar 

  • Fjose A, Eiken HG, Njølstad PR, Molven A, Hordvik I (1988) A zebrafish engrailed-like sequence expressed during embryogenesis. FEBS Lett 231: 355–360

    Article  PubMed  CAS  Google Scholar 

  • Fulwiler C, Gilbert W (1991) Zebrafish embryology and neural development. Curr Opinions Cell Biol 3: 988–991

    Article  CAS  Google Scholar 

  • Gardner RL, Lyon MF, Evans EP, Burtenshaw MD (1985) Clonal analysis of X-chromosome inactivation and the origin of the germline in the mouse embryo. J Embryol Exp Morphol 88: 349–363

    PubMed  CAS  Google Scholar 

  • Gluecksohn-Schoenheimer S (1938) The development of normal and homozygous Brachy (TIT) mouse embryos in the extraembryonic coelom of the chick. Proc Natl Acad Sci USA 30: 134–140

    Article  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss, P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10: 1135–1147

    PubMed  CAS  Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features or organization and expression. Cell 57: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Grüneberg H (1958) Genetical studies on the skeleton of the mouse XXIII: the development of Brachyury and Anury. J Embryol Exp Morphol 6: 424–443

    PubMed  Google Scholar 

  • Grunwald DJ, Streisinger G (1992a) Induction of mutations in the zebrafish with ultraviolet light. Genet Res Camb 59: 93–101.

    Article  CAS  Google Scholar 

  • Grunwald DJ, Streisinger G (1992b) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res Camb 59: 103–116

    Article  CAS  Google Scholar 

  • Grunwald DJ, Kimmel CB, Westerfield M, Walker C, Streisinger G (1988) A neural degeneration mutation that spares primary neurons in the zebrafish. Dev Biol 126: 115–128

    Article  PubMed  CAS  Google Scholar 

  • Guyomard R, Chourrout D, Leroux C, Houdebine LM, Pourrain F (1989) Integration and germ line transmission of foreign genes micro injected into fertilized trout eggs. Biochemie 71: 857–863

    Article  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between linked factors. J Genet 8: 299–309

    Article  Google Scholar 

  • Hanneman EH, Westerfield M (1989) Early expression of acetylcholinesterase activity in functionally distinct neurons of the zebrafish. J Comp Neurol 284: 350–361

    Article  PubMed  CAS  Google Scholar 

  • Hanneman E, Trevarrow B, Kimmel CB, Westerfield M (1988) Segmental pattern of development of the spinal cord and hindbrain of the zebrafish embryo. Development 103: 49–58

    PubMed  CAS  Google Scholar 

  • Hatta K, Schilling TF, BreMiller RA, Kimmel CB (1990) Specification of jaw muscle in zebrafish: correlation with engrailed-homeoprotein expression. Science 250: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Hatta K, BreMiller R, Westerfield M, Kimmel CB (1991a) Diversity of expression of engrailed-like antigens in zebrafish. Development 112: 821–832

    PubMed  CAS  Google Scholar 

  • Hatta K, Kimmel CB, Ho RK, Walker C (1991b) The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350: 339–341

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Harland RM (1989) Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos. Development 106: 611–617

    Google Scholar 

  • Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343: 617622

    Google Scholar 

  • Hinegardner R, Rosen DE (1972) Cellular DNA content and the evolution of teleostean fishes. Am Natur 106: 311–319

    Article  Google Scholar 

  • Hisaoka KK, Battle HL (1958) The normal developmental stages of the zebrafish, Brachydanio rerio ( Hamilton-Buchanan ). J Morphol 102: 311–328

    Google Scholar 

  • Hisoaka KK, Firlit CF (1960) Further studies on the embryonic development of the zebrafish, Brachydanio rerio ( Hamilton-Buchanan ). J Morphol 107: 205255

    Google Scholar 

  • Ho RK, Kane DA (1990) Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348: 728–730

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH (1991) Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish and ascidian. Gene 98: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH, Hogan BLM (1988) Expression of homeobox genes during mouse development: a review. Genes Dev 2: 773–782

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH, Williams NA (1990) Conservation of engrailed-like homeobox sequences during vertebrate evolution. FEBS Lett 277: 250–252

    Article  PubMed  CAS  Google Scholar 

  • Horvitz RH, Brenner S, Hodgkin J, Herman RK (1979) A uniform genetic nomenclature for the nematode, Caenorhabditis elegans. Mol Gen Genet 175: 129–133

    Article  PubMed  CAS  Google Scholar 

  • Houdebine LM, Chourrout D (1991) Transgenics in fish. Experientia 47: 891–897

    Article  PubMed  CAS  Google Scholar 

  • Indiq FE, Moav B (1988) A prokaryotic gene is expressed in fish cells and persists in tilapia embryos and adults following microinjection. In: Zohar Y, Breton B (eds) Reproduction in fish: basic and applied aspects of endocrinology and genetics. INRA Press, Paris, p 221

    Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Yamashita S, Hata JI, Kabeno S, Asada S, Nagahisa F, Fujita T (1990) Electroporation as a new technique for producing transgenic fish. Cell Differ Dev 29: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Johnson FM, Lewis SE (1981) Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea. Proc Natl Acad Sci USA 78: 3138–3141

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Martin GR (1987) En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev 1: 29–38

    Google Scholar 

  • Joyner AL, Kornberg T, Coleman KG, Cox DR, Martin GR (1985) Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene. Cell 43: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Herrup BA, Auerbach CA, Rossant J (1991) Stable cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251: 1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Schughart K, Ruddle FH (1989) Two steps in the evolution of Antennapedia class vertebrate homeobox genes. Proc Natl Acad Sci USA 86: 5459–5463

    Article  PubMed  CAS  Google Scholar 

  • Keller RE, Trinkaus JP (1987) Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Dev Biol 120: 12–24

    Article  PubMed  CAS  Google Scholar 

  • Kelly SJ (1977) Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J Exp Zool 200: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Wang B (1991) A cluster of Antennapedia-class homeobox genes in a nonsegmented animal. Science 253: 516–517

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Gruss P (1990) Murine developmental control genes. Science 249: 374–379

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB (1989) Genetics and early development of zebrafish. Trends Genet 5: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Law RD (1985a) Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol 108: 78–85

    Google Scholar 

  • Kimmel CB, Law RD (1985b) Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncitial layer. Dev Biol 107: 86–93

    Google Scholar 

  • Kimmel CB, Law RD (1985c) Cell lineage of zebrafish blastomeres. III. Clonal analysis of the blastula and gastrula stages. Dev Biol 107: 94–101

    Google Scholar 

  • Kimmel CB, Warga RM (1986) Tissue-specific cell lineages originate in the gastrula of the zebrafish. Science 231: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Warga RM (1987a) Indeterminate cell lineage of the zebrafish embryo. Dev Biol 124: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Warga RM (1987b) Cell lineages generating axial muscle in the zebrafish embryo. Nature 327: 234–237

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Warga RM (1988) Cell lineage and developmental potential of cells in the zebrafish embryo. Trends Genet 4: 68–74

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Sepich DS, Trevarrow B (1988) Developmental segmentation in zebrafish. Development 104 (Suppl): 197–207

    PubMed  Google Scholar 

  • Kimmel CB, Kane DA, Walker C, Warga RM, Rothman MB (1989) A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature 337: 358–362

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108: 581–594

    PubMed  CAS  Google Scholar 

  • Kimmel CB, Hatta K, Eisen JS (1991) Genetic control of primary neuronal development in zebrafish. Development Suppl (in press)

    Google Scholar 

  • Krauss S, Johansen T, Korzh V, Fjose A (1991a) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113: 1193–1206

    PubMed  CAS  Google Scholar 

  • Krauss S, Johansen T, Korzh V, Moens U, Ericson JU, Fjose A (1991b) Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube. EMBO J 10: 3609–3619

    PubMed  CAS  Google Scholar 

  • Krumlauf R, Holland PWH, McVey JH, Hogan BLM (1987) Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. Development 99: 603–617

    PubMed  CAS  Google Scholar 

  • Langille RM, Hall BK (1988) Role of the neural crest in development of the trabeculae and branchial arches in the embryonic sea lamprey, Petromyzon marinas. Development 102: 301–310

    Google Scholar 

  • Lawson KA, Menses JJ, Pederson RA (1986) Cell fate and cell lineage in the endoderm of the presomitic mouse embryo, studied with an intracellular tracer. Dev Biol 115: 325–339

    Article  PubMed  CAS  Google Scholar 

  • Lewis WH, Roosen-Runge EC (1942) The formation of the blastodisc in the egg of the zebrafish, Brachydanio rerio (illustrated with motion pictures). Anat Rec 84: 463–464

    Google Scholar 

  • Lin S, Long W, Chen J, Hopkins N (1992) Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc Natl Acad Sci USA 89: 4519–4523.

    Article  PubMed  CAS  Google Scholar 

  • Luther W (1936) Potenzprüfungen an isolierten Teilstücken der Forellenkeimscheibe. Wilhelm Roux ’ Arch Entwicklungsmech Org 135: 359–383

    Article  Google Scholar 

  • Mahon KA, Westphal H, Gruss P (1988) Expression of homeobox gene Hox 1.1 during mouse embryogenesis. Development 104 (Suppl): 187–195

    PubMed  Google Scholar 

  • Marcey D, Nüsslein-Volhard C (1986) New and views: embryology goes fishing. Nature 321: 380–381

    Article  Google Scholar 

  • McEvoy T, Stack M, Keane B, Barry T, Sreenan J, Gannon F (1988) The expression of a foreign gene in salmon embryos. Aquaculture 68: 27–37

    Article  Google Scholar 

  • McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ (1984) A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308: 428–433

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1976) Mammalian chimeras. Cambridge Univ Press, New York

    Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62: 1073–1085

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Moon RT (1989) int-1 — a proto-oncogene involved in cell signalling. Development (1989 Suppl):161–167

    Google Scholar 

  • Mendelson B (1986a) Development of reticulospinal neurons of the zebrafish. I. Time of origin. J Comp Neurol 251: 160–171

    Article  PubMed  CAS  Google Scholar 

  • Mendelson B (1986a) Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J Comp Neurol 252: 17 2184

    Google Scholar 

  • Mintz B (1967) Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Proc Natl Acad Sci USA 58: 344–351

    Article  PubMed  CAS  Google Scholar 

  • Mintz B (1970) Gene expression in allophenic mice. In: Padykula HA (ed) Control mechanisms in the expression of cellular phenotypes. Academic Press, New York, p 15

    Google Scholar 

  • Molven A, Wright CVE, BreMiller R, De Robertis EM, Kimmel CB (1990) Expression of a homeobox gene product in normal and mutant zebrafish embryos: evolution of the tetrapod body plan. Development 109: 279–288

    PubMed  CAS  Google Scholar 

  • Molven A, NjOlstad PR, Fjose A (1991) Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. EMBO J 10: 799–807

    PubMed  CAS  Google Scholar 

  • Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122: 300–319

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH (1895) The formation of the fish embryo. J Morphol 10: 419–472

    Article  Google Scholar 

  • Myers PZ, Eisen JS, Westerfield M (1986) Development and axonal outgrowth of identified motoneurons in the zebrafish. J Neurosci 6: 2278–2289

    PubMed  CAS  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686

    Google Scholar 

  • Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol 121: 526–541

    Article  PubMed  CAS  Google Scholar 

  • Njolstad PR, Fjose A (1988) In situ hybridization patterns of zebrafish homeobox genes homologous to Hox-2.1 and En-2 of mouse. Bioch Biophys Res Comm 157: 426–432

    Article  CAS  Google Scholar 

  • Njolstad PR, Molven A, Eiken HG, Fjose A (1988a) Structure and neural expression of a zebrafish homeobox sequence. Gene 73: 33–46

    Article  PubMed  CAS  Google Scholar 

  • Njolstad PR, Molven A, Hordvik I, Apold J, Fjose A (1988b) Primary structure, developmentally regulated expression and potential duplication of the zebrafish homeobox gene ZF-21. Nucl Acids Res 16: 9096–9111

    Article  Google Scholar 

  • Njolstad PR, Molven A, Fjose A (1988c) A zebrafish homologue of the murine Hox-2.1 gene. FEBS Lett 230: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Njolstad PR, Molven A, Apold J, Fjose A (1990) The zebrafish homeobox gene hox-2.2: transcription unit, potential regulatory regions and in situ localization of transcripts EMBO J 9: 515–524

    CAS  Google Scholar 

  • Nusse R (1988) The int genes in mammary tumorigenesis and in normal development. Trends Genet 2: 244–247

    Article  Google Scholar 

  • Oliver G, Wright CVE, Hardwicke J, DeRobertis EMM (1988a) Differential anteroposterior expression of two proteins encoded by a homeobox gene in Xenopus and mouse embryos. EMBO J 9: 515–524

    Google Scholar 

  • Oliver G, Wright CVE, Hardwicke J, DeRobertis EMM (1988b) A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos. Cell 55: 1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Oliver G, Sidell N, Fiske W, Heinzmann C, Mohandas T, Sparkes RS, De Robertis EM (1989) Complementary homeo protein gradients in developing limb buds. Genes Dev 3: 641–650

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer JM (1936) Processes of localization in developing Fundulus. J Exp Zool 73: 405–444

    Article  Google Scholar 

  • Oppenheimer JM (1937) The normal stages of Fundulus heteroclitus. Anat Rec 68: 1–15

    Article  Google Scholar 

  • Oppenheimer JM (1938) Potencies for differentiation in the teleostean germ ring. J Exp Zool 79: 405–444

    Article  Google Scholar 

  • Ozato K, Kondoh H, Inohara H, Iwamatsu T, Wakamatsu Y, Okada TS (1986) Production of transgenic fish: introduction and expression of chicken 6-crystallin gene in medaka embryos. Cell Differ 19: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Papkoff J, Schryver B (1990) Secreted int-1 protein is associated with the cell surface. Mol Cell Biol 10: 2723–2730

    PubMed  CAS  Google Scholar 

  • Papkoff J, Brown AMC, Varmus HE (1987) The int-1 proto-oncogene products are glycoproteins that appear to enter the secretory pathway. Mol Cell Biol 7: 3978–3984

    PubMed  CAS  Google Scholar 

  • Pasteels J (1936) Etudes sur la gastrulation des vertebres meroblastiques. I. Teleosteens. Arch Biol 47: 206–308

    Google Scholar 

  • Pastnik A, Vreeken C, Nivard MJM, Searles KK, Vogel EW (1989) Sequence analysis of N-ethyl-N-nitrosourea-induced vermillion mutations in Drosophila melanogaster. Genetics 123: 123–129

    Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989a) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58: 955–968

    Article  PubMed  CAS  Google Scholar 

  • Patel NH, Schafer B, Goodman CS, Holmgren R (1989b) The role of segment polarity genes during Drosophila neurogenesis. Genes Dev 3: 890–904

    Article  PubMed  CAS  Google Scholar 

  • Perkins DD (1955) Tetrads and crossing over. J Cell Physiol 45 (Suppl 2): 119–149

    Article  CAS  Google Scholar 

  • Poole SJ, Kauvar L, Drees B, Kornberg T (1985) The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell 40: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Puschel AW, Balling R, Gruss P (1990a) Position-specific activity of the Hox 1.1 promoter in transgenic mice. Development 108: 435–442

    PubMed  CAS  Google Scholar 

  • Puschel AW, Balling R, Gruss P (1990b) Separate elements cause lineage restriction and specify boundaries of Hox-1.1 expression. Development 112: 279–287

    Google Scholar 

  • Puschel AW, Gruss P, Westerfield M (1992) Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114: 643–651

    PubMed  CAS  Google Scholar 

  • Reid L (1990) Meeting review: from gradients to axes, from morphogenesis to differentiation. Cell 63: 875–882

    Article  PubMed  CAS  Google Scholar 

  • Reinhard E, Nedivi E, Wegner J, Skene JHP, Westerfield M (1991) Functional conservation of GAP-43 gene regulatory elements between mammals and fish. Soc Neurosci Abstr 16: 1310

    Google Scholar 

  • Richardson KK, Richardson FC, Crosby RM, Swenberg JA, Skopek TR (1987) DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proc Natl Acad Sci USA 84: 344–348

    Article  PubMed  CAS  Google Scholar 

  • Rokkones E, Alestrom P, Skjervold H, Gautvik KM (1985) Development of a technique for microinjection of DNA into salmonid eggs. Acta Physiol Scand 124: Suppl 542, 417

    Google Scholar 

  • Rokkones E, Alestrom P, Skjervold H, Gautvik KM (1989) Micro-injection and expression of a mouse metallothionein human growth hormone fusion gene in fertilized salmonid eggs. J Comp Physiol B 158: 751–758

    Article  PubMed  CAS  Google Scholar 

  • Roosen-Runge E (1936) Furchung and Primitiventwicklung von Brachydanio rerio. Verh Anat Ges, Anat Anz 81: 297–301

    Google Scholar 

  • Roosen-Runge E (1938) On the early development — bipolar differentiation and cleavage — of the zebra fish, Brachydanio rerio. Biol Bull 75: 119–133

    Article  Google Scholar 

  • Roosen-Runge E (1939) Karyokinesis during cleavage of the zebrafish, Brachydanio rerio. Biol Bull 77: 79–91

    Article  CAS  Google Scholar 

  • Rossant J (1985) Interspecific cell markers and cell lineage in mammals. Philos Trans R Soc Lond Ser B 312: 91–100

    Article  CAS  Google Scholar 

  • Ruis I Altaba A (1991) Vertebrate development: an emerging synthesis. Trends Genet 7: 276–280

    Google Scholar 

  • Runstadler JA, Kocher TD (1991) A new antennapedia-class gene from the zebrafish. Nucl Acids Res 19: 5434

    Article  PubMed  CAS  Google Scholar 

  • Russel WL, Kelley EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA 76: 5818–5819

    Article  Google Scholar 

  • Sanes JR, Rubenstein JLR, Nicolas J-F (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 5: 3133–3142

    PubMed  CAS  Google Scholar 

  • Schirone RC, Gross L (1968) Effect of temperature on early embryological development of the zebra fish, Brachydanio rerio. J Exp Zool 169: 43–52

    Article  Google Scholar 

  • Schneider JF, Hallerman EM, Yoon SJ, He L, Gross ML, Liu Z, Faras AJ, Hackett PB, Kapuscinski AR, Guise KS (1989) Transfer of the bovine growth hormone gene into northern pike, Esox lucius. J Cell Biochem 13B (Abstr)

    Google Scholar 

  • Schughart K, Pravtcheva D, Newman MS, Hunihan L, Jiang Z, Ruddle FH (1989) Isolation and regional localization of the murine homeobox-containing gene Hox-3.3 to mouse chromosome region 15E. Genomics 5: 76–83

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Ho RK, Hermann BG, Nusslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development (In press)

    Google Scholar 

  • Scott MP, Weiner AJ (1984) Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci in Drosophila. Proc Natl Acad Sci USA 81: 4115–4119

    Article  PubMed  CAS  Google Scholar 

  • Shackleford GM, Varmus HE (1987) Expression of the proto-oncogene int-1 is restricted to postmeiotic male germ cells and the neural tube of midgestational embryos. Cell 50: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Price BMJ, Green JBA, Weigel D, Herrmann BG (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67: 1–20

    Article  CAS  Google Scholar 

  • Soriano P, Jaenisch R (1986) Retroviruses as probes of mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 46: 19–29

    Article  PubMed  CAS  Google Scholar 

  • Streisinger G (1984) Attainment of minimal biological viability and measurements of genotoxicity: production of homozygous diploid zebra fish. Natl Cancer Inst Monogr 65: 53–58

    PubMed  CAS  Google Scholar 

  • Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio renio). Nature 291: 293–296

    Article  PubMed  CAS  Google Scholar 

  • Streisinger G, Singer F, Walker C, Knauber D, Dower N (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112: 311–319

    PubMed  CAS  Google Scholar 

  • Streisinger G, Coale F, Taggart C, Walker C, Grunwald DJ (1989) Clonal origins of cells in the pigmented retinal of the zebrafish eye. Dev Biol 131: 60–69

    Article  PubMed  CAS  Google Scholar 

  • Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103: 403–412

    PubMed  CAS  Google Scholar 

  • Stuart GW, Vielkind JR, McMurray JV, Westerfield M (1990) Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109: 577–584

    PubMed  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Treisman J, Harris E, Despan C (1991) The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev 5: 594–604

    Article  PubMed  CAS  Google Scholar 

  • Trevarrow B, Marks DL, Kimmel CB (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4: 669–679

    Article  PubMed  CAS  Google Scholar 

  • Trinkaus JP (1984a) Mechanism of Fundulus epiboly — a current view. Am Zool 24: 673–688

    Google Scholar 

  • Trinkaus JP (1984b) Cells into organs. The forces that shape the embryo. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Van Raamsdonk W, Pool CW, teKronnie G (1978) Differentiation of muscle fiber types in the teleost, Brachydanio renio. Anat Embryol 153: 137–155

    Article  PubMed  Google Scholar 

  • Van Raamsdonk W, van Veer L, Veeken K, Heyting D, Pool CW (1982) Differentiation of muscle types in the teleost, Brachydanio renio, the zebrafish. Anat Embryol 164: 51–62

    Article  PubMed  Google Scholar 

  • Veini M, Bellairs R (1986) Heat shock effects in chick embryos. In: Bellairs R, Ede DA, Lash J (eds) Somites and developing embryos. Plenum Press, New York, p 135

    Google Scholar 

  • Walker C, Streisinger G (1983) Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics 103: 125–136

    PubMed  CAS  Google Scholar 

  • Walther G, Guenet J-L, Simon D, Deutsch U, Jostes B, Goulding MD, Plachov D, Balling R, Gruss P (1991) Pax: a murine multigene family of paired box containing genes. Genomics 11: 424–434

    Google Scholar 

  • Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108: 569–580

    PubMed  CAS  Google Scholar 

  • Weisblat DA, Sawyer RT, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202: 1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Weisblat DA, Zackson SL, Blair SS, Young JD (1980) Cell lineage analysis by intracellular injection of fluorescent tracers. Science 209: 1538–1541

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M (1989) The zebrafish book. Institute of Neurosciences, University of Oregon, Eugene, Oregon

    Google Scholar 

  • Westerfield M, McMurray JV, Eisen JS (1986) Identified motoneurons and their innervation of axial muscles in the zebrafish. J Neurosci 6: 2267–2277

    PubMed  CAS  Google Scholar 

  • Westerfield M, Liu DW, Kimmel CB, Walker C (1990) Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors. Neuron 4: 867–874

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M, Wegner J, Jegalian BG, DeRobertis EM, Puschel AW (1992) Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes Dev 6: 591–598

    Article  PubMed  CAS  Google Scholar 

  • Wieschaus E (1978) Cell lineage relationships in the Drosophila embryo. In Gehring WJ (ed) Results and problems in cell differentiation, vol 9. Springer, Berlin Heidelberg New York, p 97

    Google Scholar 

  • Wilkinson DG, Bailes JA, McMahon AP (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Herrmann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343: 657–659

    Article  PubMed  CAS  Google Scholar 

  • Wilson HV (1891) The embryology of the sea bass. Bull US Fish Comm 9: 209–277

    Google Scholar 

  • Wood A, Timmermans LPM (1988) Teleost epiboly: reassessment of deep cell movement in the germ ring. Development 102: 575–585

    Google Scholar 

  • Yamamoto T (1969) Sex differentiation. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 3. Academic press, New York, p 117

    Google Scholar 

  • Yanagisawa KO, Fujimoto H, Urushihara H (1981) Effects of the Brachyury (T) mutation on morphogenetic movement in the mouse embryo. Dev Biol 87: 242–248

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Liu Z, Kapuscinski AR, Hackett PB, Faras A, Guise KS (1990) Successful gene transfer in fish. In: Verma I, Mulligan R, Beauset A (eds) UCLA Symposium on molecular and cellular biology, vol 87. Alan Liss, New York, p 29

    Google Scholar 

  • Zelenin AV, Alimov AA, Barmintzev VA, Beniumov AO, Zelenina I, Krasnov AM, Kolesnikov VA (1991) The delivery of foreign genes into fertilized fish eggs using high-velocity microprojectiles. FEBS Lett 287: 118–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Hayat M, Joyce C, Gonzalez-Villasenor LI, Lin CM, Dunham R, Chen TT, Powers DA (1990) Gene transfer, expression and inheritance of pRSVrainbow trout-GHcDNA in the carp, Cyprinus carpio ( Linnaeus ). Molec Reprod Dev 25: 3–13

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weinberg, E.S. (1992). Analysis of Early Development in the Zebrafish Embryo. In: Hennig, W. (eds) Early Embryonic Development of Animals. Results and Problems in Cell Differentiation, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47191-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47191-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21836-5

  • Online ISBN: 978-3-540-47191-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics