Skip to main content

Prospect of Designed Breeding in Sesame in the Post-genomics Era

  • Chapter
  • First Online:
The Sesame Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The achievement of the Sesame Genome Project supplies the necessary information for sesame genome assisted selection breeding. The information of the structural genomics and functional genomics research in sesame provides the foundation of genome architecture analysis. Cloning of many genes and gene families makes the possibility of aggregating a number of elite traits in new varieties. In order to enhance the variety improvement, the specific genome assisted selection breeding technology for sesame is designed and discussed in this chapter. The potential of the genome assisted selection and gene design breeding in sesame is forecasted accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashri A (2006) Sesame (Sesamum indicum L.). In: Signh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, FL, pp 231–280

    Chapter  Google Scholar 

  • Chen Z, Zhi Y, Yi M, Wang J, Liang X et al (1996) Transformation of engineered male sterile gene and establishment of transgenic plants in sesame (Sesamum indicum L.). Acta Agri Bor-Sin 11(4):33–38

    Google Scholar 

  • Chyan CL, Lee TTT, Liu CP, Yang YC, Tzen JTC et al (2005) Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotechnol Biochem 69(12):2319–2325

    Article  CAS  Google Scholar 

  • Dossa K, Wei X, Li D, Fonceka D, Zhang Y et al (2016) Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol 16(1):171

    Article  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Hata N, Hayashi Y, Okazawa A, Ono E, Satake H et al (2010) Comparison of sesamin contents and cyp81q1 gene expressions in aboveground vegetative organs between two Japanese sesame (sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178(6):510–516

    Google Scholar 

  • Hsiao ESL, Lin LJ, Li FY, Wang MMC, Liao MY et al (2006) Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J Agric Food Chem 54:9544–9550

    Article  CAS  Google Scholar 

  • Jin UH, Lee JW, Chung YS, Lee JH, Yi YB et al (2001) Characterization and temporal expression of a ω-6 fatty acid desaturasec DNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Kim MJ, Kim JK, Shin JS, Suh MC (2007) The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol 64:453–466

    Article  CAS  Google Scholar 

  • Kim MJ, Go YS, Lee SB, Kim YS, Shin JS et al (2010) Seed-expressed casein kinase I acts as a positive regulator of the SeFAD2 promoter via phosphorylation of the SebHLH transcription factor. Plant Mol Biol 73(s4–5):425–437

    Article  CAS  Google Scholar 

  • Kumpatla SP, Buyyarapu R, Abdurakhmonov IY, Mammadov JA (2012) Genomics-Assisted Plant breeding in the 21st Century: Technological advances and progress. In: Ibrokhim YA (Ed) Plant breeding, Intech, Rijeka, Croatia, pp 131–133

    Google Scholar 

  • Lee TTT, Leu WM, Yang HH, Chen BCM, Tzen JTC (2006) Sesame oleosin and prepro-2S albumin expressed as a fusion polypeptide in transgenic rice were split, processed and separately assembled into oil bodies and protein bodies. J Cereal Sci 44(3):333–341

    Article  CAS  Google Scholar 

  • Miao H (2014) The Sesame Genome Project and sesame genome sequencing. In: Plant and animal genome XXII conference. 10–15th, January, San Diego, USA

    Google Scholar 

  • Miao H, Zhang H (2016) The genome of Sesamum indicum L. In: Plant and animal genome XXIV conference. Plant and Animal Genome, 9–13th, January, San Diego, USA

    Google Scholar 

  • Qiu C, Zhang H, Chang S, Wei L, Miao H (2014) Laboratory detecting method for pathogenicity of Fusarium oxysporum Schl. f. sp. sesami isolates. Acta Phytopathol Sin 44(1):26–35

    Google Scholar 

  • Varshney R, Song C, SaxenaR AS, Yu S et al (2013) Draft genome sequence of kabuli chickpea (Cicer arietinum): genetic structure and breeding constraints for crop improvement. Nat Biotechnol 31:240–246

    Article  CAS  Google Scholar 

  • Wang B, Dale ML, Kochman JK, Allen SJ, Obst NR (1999). Variations in soil population of Fusarium oxysporum f. sp. vasinfectumas influenced by fertiliser application and growth of different crops. Australas Plant Pathol 28(2):174–181

    Google Scholar 

  • Wang L, Yu S, Tong C, Zhao Y, Liu Y et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39

    Article  Google Scholar 

  • Wang L, Xia Q, Zhang Y, Zhu X, Zhu X et al (2016) Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics 17(1):1–13

    Google Scholar 

  • Wei X, Liu K, Zhang Y, Feng Q, Wang L et al (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609

    Article  CAS  Google Scholar 

  • Yu J, Golicz AA, Lu K, Dossa K, Zhang Y et al (2019) Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol J 17(5):881–892

    Article  CAS  Google Scholar 

  • Yukawa Y, Takaiwa F, Yoshida N, Yamada K (1995) Structure and expression of a cDNA encoding steroyl-acyl carrier protein desaturase in sesame. Plant Cell Physiol 37:201–205

    Article  Google Scholar 

  • Zhang H, Miao H, Wei L, Li C, Zhao R et al (2013a) Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS One 8(5):e63898

    Google Scholar 

  • Zhang YX, Wang LH, Xin H, Li D, Ma C et al (2013b) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13(1):1–12

    Article  CAS  Google Scholar 

  • Zhang H, Miao HM, Li C, Wei LB, Duan YH et al (2016) Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 6:31556

    Article  CAS  Google Scholar 

  • Zhang H, Miao H, Ju M (2019) Potential for adaptation to climate change through genomic breeding in sesame. In: Kole C (ed) Genomic designing of climate-smart oilseed crops. Springer, Cham, pp 374–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Langham, D.R., Miao, H. (2021). Prospect of Designed Breeding in Sesame in the Post-genomics Era. In: Miao, H., Zhang, H., Kole, C. (eds) The Sesame Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-98098-0_19

Download citation

Publish with us

Policies and ethics