Skip to main content

Advances in Sesame (Sesamum indicum L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Industrial and Food Crops

Abstract

Sesame is a high value and important oilseed crop owing to its dietary uses, health benefits and industrial applications. Sesame oil maintains a balanced fatty acid composition with more or less equal and higher percentages of unsaturated fatty acids. In spite of its several merits, it is behind in genetic improvement as compared to other commercial oilseed crops. Narrow genetic base, less attention to genetic improvement and cultivation in marginal lands with poor management practices are the major constraints for increased yield potential. Sesame has ample scope to breed cultivars with greater yield, as the gap between the potential and realized yields in this crop is enormous. Capsule shattering leads to heavy loss of seed yield and the crop is sensitive to a wide array of biotic and abiotic stresses. Innovative breeding approaches such as mutagenesis, somaclonal variation, interspecific hybridization, somatic hybridization and genetic transformation can be used to restructure the plant’s ideotype. In addition, identification of candidate genes/quantitative trait loci (QTL) and their monitoring in succeeding breeding cycles using molecular markers can pave the way for genetic improvement in sesame. In this pursuit, the authors present a detailed outline of the importance of sesame as a potential oilseed crop, its biosystematics, floral biology, genomics, breeding goals, present status of breeding strategies and attention to prospects for sustainable production and productivity in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Himed M, El-Bramawy S (2011) Anti-nutritional factors as screening criteria for some diseases resistance in sesame (Sesamum indicum L.) genotypes. Plant Breed Crop Sci 13(3):352–366

    Google Scholar 

  • Abdalla MAJ (2017) Genetic variability, correlation and path analysis among some sesame genotypes under irrigated system. M.Sc. thesis, Sudan University of Science & Technologh, College of Graduate Studies

    Google Scholar 

  • Abdel AIM, Serry M, El-Ahmar BA (1976) Some factors affecting self and artificial pollination in sesame, Sesamum indicum L. Agric Res Rev 54:155–159

    Google Scholar 

  • Abdellatef E, Sirelkhatem R, Mohamed AMM et al (2008) Study of genetic diversity in Sudanese sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 7:4423–4427

    CAS  Google Scholar 

  • Adeola YB, Augusta CO, Oladejo TA (2010) Proximate and mineral composition of whole and dehulled Nigerian sesame seeds. Afr J Food Sci Technol 1(3):71–75

    Google Scholar 

  • Ahmed M, Khan MA, Zafar M, Sultana S (2010) Environment-friendly renewable energy from sesame biodiesel. Energy Sources Part A Recover Util Environ Eff 32:187–197

    Google Scholar 

  • Aladji Abatchoura MMI, Noubissie TJB, Nguimbou RM, Bell JM (2015) Diallel analysis of seed oil content in sesame (Sesamum indicum L.). J Glob BioSci 4:1735–1746

    Google Scholar 

  • Alam MA, Haque MA, Hossain MR et al (2009) Haploid plantlet regeneration through anther culture in oilseed brassica species. Bangladesh J Agric Res 34(4):693–703

    Article  Google Scholar 

  • Ali GM, Yasumoto S, Seki-Katsuka M (2007) Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by amplified fragment length polymorphism markers. Electron J Biotechnol 10(1):12–23

    Article  Google Scholar 

  • Anonymous (1986) Sesame breeding and agronomy in Korea. Crop Experiment Station, Rural Development Association, South Korea

    Google Scholar 

  • Arriel NH, Di-Mauro AO, Arriel EF (2007) Genetic divergence in sesame based on morphological and agronomic traits. Crop Breed Appl Biotechnol 7:253–261

    Article  CAS  Google Scholar 

  • Arslan C, Uzun B, Ulger S, Cagırgan MI (2007) Determination of oil content and fatty acid composition of sesame mutants suited for intensive management conditions. J Am Oil Chem Soc 84:917–920

    Article  CAS  Google Scholar 

  • Ashri A (1985) Sesame and safflower: status and potentials. In: Proceedings of expert consultations. FAO, Rome, Italy

    Google Scholar 

  • Ashri A (1988) Sesame breeding – objectives and approaches. In: Omran A (ed) Oil crops: sunflower, linseed and sesame. IDRC-MR205e, IDRC, Ottawa, pp 152–164

    Google Scholar 

  • Ashri A (1995) A sesame research overview: current status, perspectives and priorities. In: Bennett MR, Wood IM (eds) Proceedings of the 1st Austral sesame workshop. NT Department of Primary Industry and Fisheries, Darwin, pp 1–17

    Google Scholar 

  • Ashiri A (2007) Sesame (Sesamum indicum L.). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, oilseed crops. CRC Press, Boca Raton, pp 231–289

    Google Scholar 

  • Ashri A, Van Zanten L (1994) Introduction. In: Induced mutations for sesame improvement. Report of the first res coordination meeting for the FAO/IAEA coordinated research program held in Vienna, Austria, 21–25 March 1994

    Google Scholar 

  • Azeez MA, Morakinyo JA (2011) Genetic diversity of fatty acids in sesame and its relatives in Nigeria. Eur J Lipid Sci Technol 113:238–244

    Article  CAS  Google Scholar 

  • Bairu MW, Fennell CW, Van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. Zelig). Sci Hortic 108:347–351

    Article  CAS  Google Scholar 

  • Baisakh N, Datta K, Oliva N et al (2001) Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnol 18(2):101–108

    Article  CAS  Google Scholar 

  • Balaram B, Sastry EVD, Solanki ZS (2018) Combining ability and heterosis studies in sesame (Sesamum indicum L.). Int J Genet 10(5):415–419

    Article  Google Scholar 

  • Banerjee PP, Kole PC (2006) Genetic variability for some physiological characters in sesame (Sesamun indicum L.). Sesame Saffl Newsl 21:20–24

    Google Scholar 

  • Banerjee PP, Kole PC (2011) Heterosis, inbreeding depression and genotypic divergence for some physiological parameters in sesame (Sesamum indicum L.). J Crop Improv 25:11–25

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L. – an important oil plant. J Agric Technol 2:259–269

    Google Scholar 

  • Baydar H (2005) Breeding for the improvement of the ideal plant type of sesame. Plant Breed 124:263–267

    Article  Google Scholar 

  • Baydar H, Turgut I, Turgut K (1999a) Variation of certain characters and line selection for yield, oil, oleic and linoleic acids in the Turkish sesame (Sesamum indicum L.) populations. Turk J Agric For 23:431–441

    Google Scholar 

  • Baydar H, Marquard R, Turgut I (1999b) Pure line selection for improved yield, oil content and different fatty acid composition of sesame, Sesamum indicum. Plant Breed 118:462–464

    Article  Google Scholar 

  • Bedigian D (2003a) Sesame in Africa: origin and dispersals. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields – progress in African archaeobotany, Africa Praehistorica. Heinrich-Barth-Institute, Cologne, pp 17–36

    Google Scholar 

  • Bedigian D (2003b) Evolution of sesame (revisited): domestication, diversity and prospects. Genet Resour Crop Evol 50:779–787. https://doi.org/10.1023/A:1025029903549

    Article  CAS  Google Scholar 

  • Beroza M, Kinman ML (1955) Sesamin, sesamolin, and sesamol content of the oil of sesame seed as affected by strain, location grown, ageing, and frost damage. J Am Oil Chem Soc 32(6):348–350

    Article  CAS  Google Scholar 

  • Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–33

    Article  CAS  Google Scholar 

  • Bhuyan J, Ramalingm RS, Sree-Rangaswamy SR (1997) Development of cytoplasmic -genic male sterile lines in sesame (Sesamum indicum L.) through genome substitution. Bull Pure Appl Sci B 16:17–20

    Google Scholar 

  • Bhuyan J, Sarma MK (2003) Identification of heterotic crosses involving cytoplasmic -genetic male sterile lines in sesame (Sesamum indicum L.). Sesame Saffl Newsl 18:7–11

    Google Scholar 

  • Bisht IS, Bhat KV, Lakhanpaul S et al (2004) Broadening the genetic base of sesame (Sesamum indicum L.) through germplasm enhancement. Plant Genet Resour 2:143–151

    Article  Google Scholar 

  • Bisht IS, Mahajan RK, Loknathan TR (1998) Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genet Resour Crop Evol 45:325–335

    Article  Google Scholar 

  • Blal AEH, Kamel SM, Mahfouz HM, Said M (2013) Impact of opened, non opened pollination and nitrogen fertilizer on sesame production in the reclaimed lands, Ismailia Governorate, Egypt. Cercet Agron Maldova 46(3):155

    Google Scholar 

  • Borchani C, Besbes S, Blecker CH, Attia H (2010) Chemical characteristics and oxidative stability of sesame seed, sesame paste, and olive oils. J Agric Sci Technol 12:585–596

    CAS  Google Scholar 

  • Boureima S, Eyletters M, Diouf M et al (2011) Sensitivity of seed germination and seedling radicle growth to drought stress in sesame (Sesamum indicum L.). Res J Environ Sci 5:557–564

    Article  Google Scholar 

  • Brigham RD (1987) Status of sesame (Sesamum indicum L.) breeding in the USA. Agronomy abstracts. Annual Meetings, p. 57. Amer Soc Agron, Madison WI (abstract)

    Google Scholar 

  • Cagirgan MI, Ozerden S, Ozbas MO (2009) Aronomic trait assessment and selection for number of capsules in determinate x indeterminate crosses of sesame. Turk J Agric For 33:231–241

    Google Scholar 

  • Cagirgan MI (2001) Mutation techniques in sesame (Sesamum indicum L.) for intensive management: confirmed mutants. In: Sesame improvement by induced mutations, IAEA-TECDOC-1195

    Google Scholar 

  • Cagırgan MI (2006) Selection and morphological characterization of induced determinate mutants in sesame. Field Crop Res 96:19–24

    Article  Google Scholar 

  • Casanas F, Simo J, Casal J, Prohens J (2017) Towards an evolved concept of landrace. Front Plant Sci 8:145. https://doi.org/10.3389/fpls.2017.00145

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary K, Badiyal A, Singh Jamwal N (2015) New frontiers in doubled haploidy breeding in wheat. Agric Res J 52(4):1–12. https://doi.org/10.5958/2395-146x.2015.00053.8

    Article  Google Scholar 

  • Das PK (1990) A simple modified technique for selfing and hybridization in (Sesamum indicum L.). Andhra Agric J 37:104–106

    Google Scholar 

  • Dasharath K, Sridevi O, Salimath PM (2007a) In vitro multiplication of sesame (Sesamum indicum L.). Indian J Crop Sci 2:121–126

    Google Scholar 

  • Dasharath K, Sridevi O, Salimath PM, Ramesh T (2007b) Production of interspecific hybrids in sesame through embryo rescue. Indian J Crop Sci 2:193–196

    Google Scholar 

  • Ding X, Wang L, Zhang Y et al (2013) Genetic variation and associated mapping for traits related to plant height constitutions in core collections of sesame (Sesamum indicum L.). Chin J Oil Crop Sci 35:262–270

    CAS  Google Scholar 

  • Dixit AA, Jin MH, Chung JW et al (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5:736–738

    Article  CAS  Google Scholar 

  • Dong CH, Hu X, Tang W et al (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26:9533–9543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dossa K, Yu J, Liao B et al (2017) Development of highly informative genome-wide single sequence repeat markers for breeding applications in sesame and construction of a web-resource: SisatBase. Front Plant Sci 8:1470. https://doi.org/10.3389/fpls.2017.01470

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossa K, Wei X, Zhang Y et al (2016) Analysis of genetic diversity and population structure of sesame accessions from Africa and Asia as major centers of its cultivation. Gene 7(4):14. https://doi.org/10.3390/genes7040014

    Article  CAS  Google Scholar 

  • El–Bramawy MASA, Abd Al-Wahid OA (2009) Evaluation of resistance of selected sesame (Sesamum indicum L.) genotypes to Fusarium wilt disease caused by Fusarium oxysporum f. sp. sesami. Tunis J Plant Prot 4:29–39

    Google Scholar 

  • Elleuch M, Besbes S, Roiseux O et al (2007) Quality characteristics of sesame seeds and by-products. Food Chem 10:641–650

    Article  CAS  Google Scholar 

  • Erkan AG, Taskin M, Turgut K (2004) Technology and engineering analysis. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol 51(6):599–607

    Article  Google Scholar 

  • Falusi OA (2007) Segregation of genes controlling seed colour in sesame (Sesamum indicum L.) from Nigeria. Afr J Biotechnol 6(24):2780–2783

    Article  CAS  Google Scholar 

  • FAOSTAT (2017) Sesame seed production in 2014, crops/world regions/production quantity from pick lists. http://faostat3.fao.org/browse/Q/QC/E. UN FAO corporate statistical database

  • FAOSTAT (2013) FAO. Statistical database. http://faostat.fao.org/

  • FAOSTAT (2015) FAO. Statistical database. http://faostat.fao.org/

  • Flor HH (1971) Current status of the gene–for–gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Ford-Lloyd B, Jackson M (1986) Plant genetic resources. Edward Arnold, London

    Google Scholar 

  • Free JB (1993) Insect pollination of crops, 2nd edn. Academic, London

    Google Scholar 

  • Fuller DQ (2003) Further evidence on the prchistory of sesame. Asian Agri-History 7(2):127–137

    Google Scholar 

  • Ganesh SK, Thangavelu S (1995) Genetic divergence in sesame (Sesamum indicum L.). Madras Agric J 82:263–265

    Google Scholar 

  • Ganeshan J (2001) Development of an ideal plant type and male sterility system in sesame suitable for summer rice fallow in the coastal regions of Tamil Nadu. In: Sesame improvement by induced mutations. Ed. IAEA–TECDOC–1195

    Google Scholar 

  • George L, Bapat VA, Rao PS (1987) In vitro multiplication of sesame (Sesamum indicum L.) through tissue culture. Ann Bot 60:17–21

    Article  Google Scholar 

  • Georgiev S, Stamatov S, Deshev M (2008) Requirements to sesame (Sesamum indicum L.) cultivars breeding for mechanized harvesting. Bulgarian J Agric Sci 14(6):616–620

    Google Scholar 

  • Georgiev S, Stamatov S (2005) Create varietal technology for mechanized harvesting sesame. Ecol Futur 2–3:82–84

    Google Scholar 

  • Georgiev S (2002) Breeding of sesame cultivars adapted to mechanize harvesting. Plant Sci 1–2:22–26

    Google Scholar 

  • Gilliand TJ (1989) Electrophoresis of sexually and vegetatively propagated cultivars of allogamous species. Plant Var Seeds 2:15

    Google Scholar 

  • Goodrich WJ, Cook RJ, Morgan AG (1985) The application of electrophoresis to the characterization of cultivars of Vicia faba L. FABIS Newsl 13:8

    Google Scholar 

  • Hawkes J (1983) The diversity of crop plants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hoballah AA (2001) Selection and agronomic evaluation of induced mutant lines of sesame. In: Sesame improvement by induced mutations, IAEA–TECDOC–1195. IAEA, Vienna, pp 137–150

    Google Scholar 

  • Hoffman F, Thomas E, Wenzel G (1982) Anther culture as a breeding tool in a rape, II. Progeny analysis of androgenetic lines and induced mutants from haploid cultures. Theor Appl Genet 61:225–232

    Article  Google Scholar 

  • Ishaq MN, Falusi OA (2008) Germplasm conservation and its impact on crop improvement. Niger Crop Res 36(1–3):285–297

    Google Scholar 

  • Islam F, Gill RA, Ali B et al (2016) Sesame. In: Gupta SK (ed) Breeding oilseed crops for sustainable production-opportunities and constraints. Elsevier Publication/Academic, London Wall, pp 135–147. https://doi.org/10.1016/B978-0-12-801309-0.00006-9

    Chapter  Google Scholar 

  • Isshiki JL, Umezaki T (1997) Genetic variations of isozymes in cultivated sesame. Euphytica 93:375–377

    Article  CAS  Google Scholar 

  • Joshi AB (1961) Sesamum. Indian Central Oilseeds Committee, Hyderabad

    Google Scholar 

  • Jung TD, Choi S-II, Choi SH et al (2018) Changes in the antiallergic activities of sesame by bioconversion. Nutrition 10(2):210. https://doi.org/10.3390/nu10020210

    Article  CAS  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654. https://doi.org/10.1146/annurev.arplant.47.1.627

    Article  CAS  PubMed  Google Scholar 

  • Kang CW (1997) Breeding for diseases and shatter resistant high yielding varieties using induced mutations in sesame. In: Proceedings of the 2nd FAO/IAEA Res. Coord. Mtg, induced mutations for sesame improvement. IAEA, Vienna, pp 48–57

    Google Scholar 

  • Kapoor L (1990) Handbook of Ayurvedic medicinal plants. CRC Press, Boca Raton

    Google Scholar 

  • Kavak H, Boydak E (2006) Screening of the resistance levels of 26 sesame breeding lines to Fusarium wilt disease. Plant Pathol J 5(2):157–160. https://doi.org/10.3923/ppj.2006.157.160

    Article  Google Scholar 

  • Ke T, Mao H, Hui FL et al (2010) Bioinformatics analysis and functional annotation of complete expressed sequence tag collection for oil crops. China J Bioinf 8:165–170

    Google Scholar 

  • Kim DH, Zur G, Danin-Poleg Y et al (2002) Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed 121:259–262

    Article  CAS  Google Scholar 

  • Kim KS, Park SH, Jenks MA (2007) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (1991) Cytogenetics of sesame (Sesamum indicum). In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, Amsterdam, pp 581–592

    Google Scholar 

  • Koca H, Bor M, Zdemir FO, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kulkarni VV (2006) Studies on interspecific hybridization with particular reference to development of male sterility in sesame (Sesamum indicum L.). PhD thesis, Department of Genetics & Plant Breeding, University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Kulkarni VV, Ranganatha CN, Shankergoud I (2017) Interspecific crossing barriers in sesame (Sesamum indicum L.). Int J Curr Microbiol App Sci 6(10):4894–4900

    Article  Google Scholar 

  • Kumar H, Kaur G, Banga S (2012) Molecular characterization and assessment of genetic diversity in sesame (Sesamum indicum L.) germplasm collection using ISSR markers. J Crop Improv 26(4):540–557

    Article  CAS  Google Scholar 

  • Kumara BM, Ganesamurthy K (2015) Study of reproductive compatibility and morphological characterization of interspecific hybrids in sesame spp. Afr J Agric Res 10(9):911–918

    Article  Google Scholar 

  • Langham DG (1945) Genetics of sesame. J Hered 36:135–142

    Article  Google Scholar 

  • Langham DG (1946) Genetics of sesame – HI open sesame and mottled leaf. J Hered 37:149–152

    Article  CAS  PubMed  Google Scholar 

  • Langham DG (1947) Genetics of sesame. V. Some morphological differences of the sesame flower (S. indicum L.). J Hered 38:347–352

    Article  CAS  PubMed  Google Scholar 

  • Langham DR (2007) Phenology of sesame. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, pp 144–182

    Google Scholar 

  • Langham DR, Wiemers T (2002) Progress in mechanizing sesame in the US through breeding. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 157–173

    Google Scholar 

  • Langham DG (1944) Natural and controlled pollination in sesame. J Hered 35:254–256

    Google Scholar 

  • Lee JI, Choi BH (1985) Progress and prospects of sesame breeding in Korea. In: Ashri A (ed) Sesame and safflower: status and potential. FAO plant production and protection, paper no. 66, Rome, pp 137–144

    Google Scholar 

  • Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18:337–340. https://doi.org/10.1016/S0168–9525(02)02669–0

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress, in chilling, freezing, and high temperature stress, vol 1. Academic, New York

    Google Scholar 

  • Li C, Miao H, Wei L et al (2014) Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS One 9:e105757. https://doi.org/10.1371/journal.pone.0105757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu W, Zhang Y et al (2013) Identification method of drought tolerance and association mapping for sesame (Sesamum indicum L.). Acta Agron Sin 39:1425–1433. https://doi.org/10.3724/SP.J.1006.2013.01425

    Article  CAS  Google Scholar 

  • Libin W, Hongmei M, Chun L et al (2014) Development of SNP and indel markers via de novo transcriptome assembly in Sesamum indicum L. Mol Breed 34(4):2205–2217

    Article  CAS  Google Scholar 

  • Liu H, Yang M, Wu K et al (2013) Development, inheritance and breeding potential of a recessive genic male sterile line D248A in sesame (Sesamum indicum L.). Springerplus 2:268. https://doi.org/10.1186/2193-1801-2-268

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JR, Zheng YZ, Xu RQ (1992) Analysis of nutrient quality of seed and screening for prominent germplasms in sesame. Oil Crop China 1:24–26

    Google Scholar 

  • Mahajan RK, Bisht I, Baldev S, Dhillon BS (2007) Establishment of a core collection of world sesame (Sesamum indicum L.) germplasm accessions. SABRAO J Breed Genet 39(1):53–64

    Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjornsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Maneekao S, Srikul N, Poo-sri B, Kumphai S (1997) Sesame improvement through mutation induction for reduction of seed loss at harvest. In: Proceedings of the 2nd FAO/IAEA Res Coord Mtg, induced mutations for sesame improvement. IAEA, Vienna, pp 69–75

    Google Scholar 

  • Mary RJ, Jayabalan N (1995) EMS induced variability in sesame. Crop Improv 22:170–174

    Google Scholar 

  • Mathur S, Trivedi PC, Sharma NK (2016) Characterization for DUS testing of sixteen Sesamum varieties. Lap Lambert Academic Publishing, ISBN-10: 3659898201, pp 1–88

    Google Scholar 

  • Matysik J, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Micke A, Donini B, Maluszynski M (1987) Induced mutations for crop improvement – a review. Trop Agric (Trinidad) 64:259–278

    Google Scholar 

  • MinMin Y, HongYan L, Ting Z et al (2017) Production and identification of F1 interspecific hybrid between Sesamum indicum and wild relative S. indicatum. Sci Agric Sin 50(10):1763–1771. https://doi.org/10.3864/j.issn.0578-1752.2017.10.002

    Article  Google Scholar 

  • Mishra DR, Tripathy SK, Moanty SK et al (2016) Revealing nature of gene action of morpho-economic traits in sesame (Sesamum indicum L.). Int J Curr Agric Sci 6(6):58–61

    Google Scholar 

  • Miyahara Y, Hibasami H, Katsuzaki H et al (2001) Sesamolin from sesame seed inhibits proliferation by inducing apoptosis in human lymphoid leukemia Molt 4B cells. Int J Mol Med Apr 7(4):369–371

    CAS  Google Scholar 

  • Mohamed HMA, Awatif LI (1998) The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem 62:269–276. https://doi.org/10.1016/S0308-8146(97)00193-3

    Article  CAS  Google Scholar 

  • Mondal N, Bhat KV (2015) SNP markers to study functional polymorphism in fatty acid desaturases of Indian sesame germplasm. In: 6th world congress on biotechnolgy. J Biotech Biomater 5:6

    Google Scholar 

  • Mubashir AK, Mirza MY, Akmal M et al (2009) Study of heterosis in ten crosses of sesame. Pak J Agric Res 22:127–131

    Google Scholar 

  • Mungala RA, Bhatia VJ, Movaliya HM et al (2017) Study of combining ability for seed yield and its components in sesame (Sesamum indicum L.). Int J Pure Appl Biosci 5(4):775–785. https://doi.org/10.18782/2320-7051.3076

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murty BR, Oropeza F (1989) Diversity pattern in Sesamum mutants selected for a semiarid cropping system. Theor Appl Genet 77:275–286

    Article  CAS  PubMed  Google Scholar 

  • Murty GSS, Bhatia CR (1990) Inheritance of polypetalous corolla mutation in sesame. Indian Acad Sci Plant Sci 100:7–10

    Google Scholar 

  • Nahunnaro H, Tunwari BA (2012) Natural selection of four sesame resistant cultivars against Cercospora leaf spot (CLS) disease (Cercospora sesami Zimm) in the Nigerian Southern and Northern Guinea Savannahs. World J Agric Sci 8(5):540–546

    Google Scholar 

  • Najeeb U, Mirza MY, Jilani G et al (2012) Sesame. In: Gupta SK (ed) Technological innovation in major world oil crops, vol 1, breeding. Springer, New York, pp 131–145

    Chapter  Google Scholar 

  • Nakano D, Itoh C, Takaoka M et al (2002) Anti-hypertensive effect of sesamin inhibition of vascular superoxide production by sesamin. Biol Pharm Bull 25:1247–1249

    Article  CAS  PubMed  Google Scholar 

  • Nanthakumar G, Singh KN, Vaidyanathan P (2000) Relationships between cultivated sesame (Sesamum sp.) and the wild relatives based on morphological characters, isozymes and RAPD markers. J Genet Breed 54:5–12

    CAS  Google Scholar 

  • Naqvi SF, Inam-ul-Haq M, Tahir MI, Mughal SM (2012) Screening of sesame germplasm for resistance against bacterial blight caused by Xanthomonas campestris pv. sesame. Pak J Agric Sci 49(2):131–134

    Google Scholar 

  • Nayar NM, Mehra KL (1970) Sesame: its uses; botany, cytogenetics, and origin. Econ Bot 24:20–31

    Article  Google Scholar 

  • Nupur M, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87(11):1263–1269

    Article  CAS  Google Scholar 

  • Nyanapah JO, Ayiecho PO, Nyabundi JO (1995) Evaluation of sesame cultivars for resistance to Cercospora leaf spot. Afr Agric For 60:115–121

    Article  Google Scholar 

  • Ohmido N, Kijima K, Akiyama Y et al (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388–394. https://doi.org/10.1007/s004380051182

    Article  CAS  PubMed  Google Scholar 

  • Ojiambo PS, Ayiecho PO, Nyabundi JO (1999) Effect of plant age on sesame infection by Alternaria leaf spot. Afr Crop Sci J 7:91–96

    Article  Google Scholar 

  • Onsaard E (2012) Sesame proteins. Int Food Res J 19(4):1287–1295

    CAS  Google Scholar 

  • Oplinger ES, Putnam DH, Kaminski AR et al (1990) Sesame: alternative field crops manual. University of Wisconsin Extension, Madison, WI, USA, University of Minnesota Extension, St. Paul, USA. http://www.hort.purdue.edu/newcrop/afcm/sesame.html

  • Pandey SK, Dasgupta T, Rathore A, Vemula A (2018) Relation of parental genetic distance with heterosis and specific combining ability in sesame(Sesamum indicum L.) based on phenotypic and molecular marker analysis. Biochem Genet 56(3):188–209. https://doi.org/10.1007/s10528-017-9837-2

    Article  CAS  PubMed  Google Scholar 

  • Pathirana (1992) Gamma ray-induced field tolerance to Phytophthora blight in sesame. Plant Breed 108:314–319

    Article  Google Scholar 

  • Pham DT, Bui MT, Werlemark G (2009) A study of genetic diversity of sesame (Sesamum indicum L.) in Vietnam and Cambodia estimated by RAPD markers. Genet Resour Crop Evol 56:679–690

    Article  CAS  Google Scholar 

  • Pham T, Geleta M, Bui TM et al (2011) Comparative analysis of genetic diversity of sesame (Sesamum indicum L.) from Vietnam and Cambodia using agro–morphological and molecular markers. Hereditas 148:28–35

    Article  PubMed  Google Scholar 

  • Prabhakaran AJ (1996) Genetic diversity of wild sesame from Southern India. Plant Genet Res 106:44–46

    Google Scholar 

  • Prajapati KP, Patel KM, Prajapati BN, Patel CJ (2006) Genetic analysis of quantitative traits in sesame (Sesamum indicum L.). J Oil Seeds Res 23(2):171–173

    Google Scholar 

  • Rajeswari S (2001) Wide hybridization and in vitro studies in Sesamum species (Sesamum indicum L. and Sesamum alatum Thonn.). PhD thesis, TNAU, Coimbatore, Tamil Nadu

    Google Scholar 

  • Rajeswari S, Thiruvengadam V, Ramaswamy NM (2010) Production of interspecific hybrids between Sesamum alatum Thonn and S. indicum through ovule culture and screening for phyllody disease resistance. S Afr J Bot 76(2):252–258

    Article  Google Scholar 

  • Ram HH (2011) Sesame. In: Ram HH (ed) Crop breeding and biotechnology. Kalyani Publishers, New Delhi, pp 514–528

    Google Scholar 

  • Ram R, Catlin D, Romero J, Cowley C (1990) Sesame: new approaches for crop improvement. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 225–228

    Google Scholar 

  • Ramahatan T, Durairaj MS, Prabakaran AJ (1992) Induced male sterile in Sesamum indicum L. Sesame Saffl Newsl 7:34–36

    Google Scholar 

  • Ranaweera KKDS, Rathirana R (1992) Optimization of media and conditions for callus induction from anthers of sesame cultivar MI 3. J Nat Sci Counc Sri Lanka 20(2):309–316

    CAS  Google Scholar 

  • Rangaswamy M, Rathinam M (1982) Mutagen induced male sterile lines in sesame. Indian J Genet Plant Breed 42(2):142–143

    Google Scholar 

  • Rao PVR, Anuradha G, Jayaprada M et al (2011) Inheritance of powdery mildew tolerance in sesame. Arch Phytopathol Plant Protect 45(4):404–412

    Article  Google Scholar 

  • Saha A (2017) Five health benefits of black sesame seeds for better digestion and healthier bones. NDTV Foods, August 25, 2017 11:15 IST. https://food.ndtv.com/food–drinks/5–healthy–benefits–of–sesame–seeds–for betterdigestion–and–healthier–bones–1416030

  • Salazar B, Laurentin H, Davila M (2006) Reliability of the RAPD technique for germplasm analysis of sesame (Sesamum indicum L.) from Venezuela. Interciencia 31:456–460

    Google Scholar 

  • Sanal PK, Mathur VL (2008) Chromosomal instability in callus culture of Pisum sativum. Plant Cell Tissue Org Cult 78(3):267–271

    Article  Google Scholar 

  • Saravannan S, Nadarajan N (2003) Combining ability studies in sesame. Sesame Saffl Newsl 18:1–6

    Google Scholar 

  • Singh B, Bisen R, Tiwari A (2017) DUS testing of sesame (Sesamum indicum L.) varieties using morphological descriptors. Bull Environ Pharmacol Life Sci 6(1):05–12

    Google Scholar 

  • Singh PK, Akram M, Vajpeyi M et al (2007) Screening and development of resistant sesame varieties against phytoplasma. Bull Insectol 60(2):303–304

    Google Scholar 

  • Singh PK (2004) Identification of specific cross combination in sesame (Sesamum indicum L.). J Oil Seeds Res 21:338–339

    Google Scholar 

  • Solanki ZS, Gupta D (2003) Inheritance studies for seed yield in sesame. Sesame Saffl Newsl 18:25–28

    Google Scholar 

  • Spandona B, Prasad RBN, Sarika CH, Sivaramakrishnan S (2013) Variation in seed oil content and fatty acid composition in sesame (Sesamum indicum). Indian J Agric Sci 83(12):1402–1405

    Google Scholar 

  • Stuber CW (1992) Biochemical and molecular markers in plant breeding. Plant Breed Rev 9:37–61

    CAS  Google Scholar 

  • Sun J, Zhang XR, Zhang YX et al (2009) Effects of waterlogging on leaf protective enzyme activities and seed yield of sesame at different growth stages. Chin J Appl Environ Biol 15:790–795

    CAS  Google Scholar 

  • Supriya P, Bhat KV (2018) Genome-wide identification of genes, transcription factors and transposable elements in sesame (Sesamum indicum L.). Int J Curr Microbiol App Sci 7(2):2362–2366

    Article  CAS  Google Scholar 

  • Taskin MK, Ercan AG, Turgut K (1999) Agrobacterium tumefaciens-mediated transformation of sesame (Sesamum indicum L.). Turk J Bot 23:291–295

    Google Scholar 

  • Teshome D, Kassahun T, Bekele E (2015) Genetic diversity of sesame germplasm collection (SESAMUM INDICUM L.): implication for conservation, improvement and use. Int J Biotechnol Mol Biol Res 6(2):7–18. https://doi.org/10.5897/IJBMBR2014.0219

    Article  CAS  Google Scholar 

  • Thomas WTB, Foster BP, Gertsson B (2003) Double haploids in breeding. In: Maluszynski M, Kasha K, Foster BP, Szarejko I (eds) Doubled haploid production in crop plants. Klewer Academic Publishers, London, pp 337–350

    Chapter  Google Scholar 

  • Tripathy SK (2015) In vitro screening of callus cultures and regenerants for drought tolerance in upland rice. Res J Biotechnol 10(6):23–28

    Google Scholar 

  • Tripathy SK, Mishra DR, Mohapatra PM et al (2016a) Genetic analysis of seed yield in sesame (Sesamum indicum L.). Int J Agric Sci 6(9):1128–1132

    Google Scholar 

  • Tripathy SK, Mishra DR, Dash GB et al (2016b) Combining ability analysis in sesame (Sesamum indicum L.). Int J Biosci 9(3):114–121

    Article  Google Scholar 

  • Troncoso-Ponce MA, Kilaru A, Cao X et al (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68:1014–1027. PMid:21851431 PMCid:PMC3507003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ucan K, Killi F, Gencoglan C, Merdun H (2007) Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum L.) under field conditions. Field Crop Res 101(3):249–258

    Article  Google Scholar 

  • Ullah N, Mirza MY, Jilani G, Zhou W (2012) Sesame. In: Gupta SK (ed) Technological innovations in major world oil crops, vol 1. Springer, LLC, New York, pp 131–145. https://doi.org/10.1007/978-1-4614-0356-2_5

    Chapter  Google Scholar 

  • Uncu AO, Frary A, Karlovsky P, Doganlar S (2016) High–throughput single nucleotide polymorphism (SNP) identification and mapping in the sesame (Sesamum indicum L.) genome with genotyping by sequencing (GBS) analysis. Mol Breed 36:173. https://doi.org/10.1007/s11032–016–0604–6

    Article  Google Scholar 

  • Uncu AO, Gultekin V, Allmer J et al (2015) Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome 8(2):1–12

    Article  CAS  Google Scholar 

  • Uzun B, Cagirgan MI (2009) Identification of molecular markers linked to determinate growth habit in sesame. Euphytica 166:379–384

    Article  CAS  Google Scholar 

  • Uzun B, Lee D, Donini P, Cagirgan ML (2003) Identification of a molecular marker linked to the closed capsule mutant trait in sesame using AFLP. Plant Breed 122(1):95–97. https://doi.org/10.1046/j.1439.0523.2003.00787.x

    Article  CAS  Google Scholar 

  • Van Zanten L (2001) Sesame improvement by induced mutations: results of the co–ordinated research project and recommendation for future studies. In: Sesame improvement by induced mutations (Ed. IAEA–TECDOC–1195), p 5

    Google Scholar 

  • Vanishree LR, Banakar CN, Goudappagoudar R (2013) Inheritance of phyllody resistance in sesame (Sesamum indicum L.). Bioinf Lett 10(1b):177–179

    Google Scholar 

  • Vekaria DM, Dobariya KL, Rajani CJ, Patel MB (2015) Nature and magnitude of gene action and genetic components of variation for yield and yield contributing characters in F2 generation of sesame (Sesamum indicum L.). Bioscan 10(2):857–861

    CAS  Google Scholar 

  • Wang L, Zhang Y, Zhu X et al (2017) Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 7:8349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yu S, Tong C et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39. https://doi.org/10.1186/gb–2014–15–2–r39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang Y, Qi X et al (2012) Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Acta Physiol Plant 34:2241–2249

    Article  CAS  Google Scholar 

  • Warra AA (2011) Sesame (Sesamum indicum L.) seed oil methods of extraction and its prospects in cosmetic industry: a review. Bayer J Pure Appl Sci 4(2):164–168

    Google Scholar 

  • Wei LB, Zhang HY, Zheng YZ et al (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genome 31(2):199–208

    Article  CAS  Google Scholar 

  • Wei X, Wang L, Zhang Y et al (2014) Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules 19(4):5150–5162. https://doi.org/10.3390/molecules19045150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Liu K, Zhang Y et al (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Gong H, Yu J et al (2017) Sesame FG: an integrated database for the functional genomics of sesame. Sci Rep 7:2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss EA (1983) Sesame. In: Weiss EA (ed) Oilseed crops. Longman, Inc, New York, pp 282–340

    Google Scholar 

  • Weldemichael MY, Juhar HM (2018) Sesame (Sesamum indicum L.): existing status, features, significance and new approaches for improvement in the case of Ethiopia: a review. World J Biol Med Sci 5(2):1–14

    Google Scholar 

  • Were BA, Gudu S, Onkware AO et al (2006a) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tissue Organ Cult 85:235–239

    Article  Google Scholar 

  • Were BA, Onkware AO, Gudu S et al (2006b) Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crop Res 97:254–260

    Article  Google Scholar 

  • Weyen J (2009) Barley and wheat doubled haploids in breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 179–187

    Chapter  Google Scholar 

  • Wongyai W, Saengkaewsook W, Veerawudh J (2001) Sesame mutation induction: improvement of non–shattering capsule by using gamma rays and EMS. In: Sesame improvement by induced mutations, IAEA–TECDOC–1195. IAEA, Vienna, pp 71–78

    Google Scholar 

  • Wongyai W, Sengkaewsook W, Verawudh J (1997) Sesame mutation breeding: improvement of non-shattering capsule by using gamma-rays and EMS. In: Proceedings of the 2nd FAO/IAEA Res. Coord. Mtg, induced mutations for sesame improvement. IAEA, Vienna, pp 76–84

    Google Scholar 

  • Wu K, Yang M, Liu H et al (2014) Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (indel) and simple sequence repeat (SSR) markers. BMC Genet 15:35. https://doi.org/10.1186/1471–2156–15–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu WH (2007) The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chem 104:341–344

    Article  CAS  Google Scholar 

  • Xu L, Najeeb U, Shen WQ et al (2009) Establishment of Agrobacterium-mediated Bt gene transformation system in mat rush (Juncus effusus L.). Pak J Bot 41(5):2615–2624

    CAS  Google Scholar 

  • Yadav LN, Tripathi MK, Sikarwar RS, Mishra AK (2005) Heterosis in sesame. Sesame Saffl Newslett 20:Online

    Google Scholar 

  • Yadav M, Sainger DCM, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tissue Org Cult 103(3):377–386. https://doi.org/10.1007/s11240-010-9791-8

    Article  CAS  Google Scholar 

  • Yan-Xin Z, Lin-Hai W, Dong-Hua L et al (2014) Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. China Agric Sci 47(3):422–430

    Google Scholar 

  • Yermanos DM (1980) Sesame. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA, Madison, pp 549–563

    Google Scholar 

  • Yifter M, Sbhatu DB, Mekbib F, Abraha E (2009) In vitro regeneration of four Ethiopian varieties of sesame(Sesamum indicum L.). Asian J Plant Sci 12(5):214–218. https://doi.org/10.3923/ajps.2013.214.218

    Article  Google Scholar 

  • Zhang H, Miao H, Wei L et al (2013) Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS One 8:e63898. https://doi.org/10.1371/journal.pone.0063898

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Li D et al (2014) Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. China Agric Sci 45:2580–2591. https://doi.org/10.3864/j.issn.0578–1752.2014.03.002

    Article  Google Scholar 

  • Zhang Y, Wang L, Li D et al (2012) Association mapping of sesame (Sesamum indicum L.) resistance to macrophomina phaseolina and identification of resistant accessions. Sci Agric Sin 45:2580–2591. https://doi.org/10.3864/j.issn.0578-1752.2012.13.003

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to all researchers for their valuable contributions included in this pursuit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Tripathy .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Sesame

Institute

Specialization and research activities in sesame

Contact information and website

Bose Institute, Kolkata

Genetic diversity

Ranjana Prasad

https://www.researchgate.net/profile/Ranjana_Prasad

C. S. Azad University of Agriculture & Technology, Kanpur, India

Screening for phytoplasma disease

Prabhakaran Kumar Singh, CSAUAT, Kanpur, India

http://csauk.ac.in/

Chinese Academy of Agricultural Sciences, China

Sinbase and ssr based-genome mapping

Wang Linhai

http://www.sesamebioinfo.org/PMDBase.

Crane Global Solutions Ltd, India

New approaches for crop improvement

Raghav Ram

https://www.zoominfo.com

Henan Academy of Agricultural Sciences, Nanjing Agricultural University, China

Association mapping of seed oil and protein content

Chun Li

Email:zhy@hnagri.org.cn

http://www.caas.cn/en/index.shtml

Indian Agricultural Research Institute,

New Delhi

Breeding for disease resistance

Sajadun Nabi

https://www.researchgate.net/publication/284097386

Indian Institute of Oil-seeds Research (IIOR), Hyderabad-30, India

Oil seeds research including sesame breeding

A. Vishnuvardhan Reddy

email: director.iior@icar.gov.in

http://www.icar-iior.org.in/

Institute of Plant Genetic Resource, Bulgaria

Mechanized harvesting

St. Georgiev,

IPGR, BG – 4122 Sadovo, Plovdiv, Bulgaria http://ipgrbg.com/en/

Izmir Institute of Technology, Turkey

Georg-August-Univ., Germany

SNP identification for GBS analysis

Sami Doganlar, Ayse Ozgur Uncu

Email: samidoganlar@iyte.edu.tr

http://www.iyte.edu.tr/AnaSayfa.aspx?d=ENG

JNKVV, Jabalpur, India

DUS testing

Rajani Bisen

Email: rajanitomar20@gmail.com

http://jnkvv.org/

Joint FAO/IAEA Divi-sion of Nuclear Techniques in Food and Agriculture

Sesame improvement by induced mutations

IAEA-TECDOC-1195

https://www.iaea.org/

Louisiana State University, USA

Powdery mildew resistance

P. Venkata Ramana Rao

https://www.facebook.com/public/P-Venkataramana-Rao

Modibbo Adama University of Technology, Nigeria

Disease resistance

H. Nahunnaro

Email: hycenth.nahunnaro@yahoo.com.

http://mautech.edu.ng/new/index.php/en/

Nanjing Agricultural University, China

Genetic linkage map construction

Li-Bin Wei

Email: moelab@njau.edu.cn,

http://english.njau.edu.cn/

National Bureau of Plant Genetic Resources, India

SNP markers for study of functional polymorphism

Nupur Mondal

Email: nupur.mondal84@gmail.com

http://www.nbpgr.ernet.in/

National Crop Experiment Station, Korea

Disease and Shatter resistance

C.W.KANG, https://www.researchgate.net/profile/Cw_Kang

Odisha Univ. of Agril. & Tech, Odisha, India

Gene action, heterosis, combining ability

Swapan K Tripathy

Email: swapankumartripathy@mail.com

http://www.ouat.nic.in/

Oil Crops Research Institute of Chinese Academy of Agricultural Sciences

Interspecific hybridization

Yang MinMin

E.mail: nc.saac@nimnimgnay; moc.361@mmgnaybh

http://en.oilcrops.com.cn/

Oil Crops Research Institute, China

Sesame genomics

Linghai Wang

E.mail: wangnuo@dlmu.edu.cn

http://en.oilcrops.com.cn/

Pir Mehr Ali Shah Arid Agriculture University, Pakistan

Bacterial blight resistance

S. Farah Naqvi

Email: dr.inam@uaar.edu.pk

http://www.uaar.edu.pk/

PPV & FRA, Govt. of India

Guidelines for DUS Testing

PPV & FRA, Govt. of India http://plantauthority.gov.in/

Punjab Agricultural. University, India

Genetic diversity using ISSR markers

Hitesh Kumar

Email: hiteshkmr25@gmail.com

http://www.pau.edu/

Suez Canal Univ., 41522 Ismailia, Egypt

Nature of gene action, screening for antinutritional factors

M.A.S. El-Bramawy

Email: el_bramawy71@hotmail.com

http://scuegypt.edu.eg/en/

Tamil Nadu Agricultural University, India

Interspecific hybridization

S. Rajeswari

Email: rajisundar93@gmail.com

http://www.tnau.ac.in/

Universidade Federal do Ceará, Brazil

Floral biology

Patrícia Barreto de Andrade

Universidade Federal do Ceará, Brazil

http://www.ufc.br/

University Goettingen, Germany

Relationship between metabolic and genomic diversity

Petr Karlovsky

Email: pkarlov@gwdg.de

http://www.uni-goettingen.de/en/1.html

University of Agricultural Sciences, Dharwad, India

Mechanized harvesting

Vikas V. Kulkarni

Email: VikasVKulkarni@VikasVKulkarni3

http://www.uasd.edu/

University of Ruhuna, Sri Lanka

Selection procedure for breeding

Ranjith Pathirana

ranjith.patirana@plantandfood.co.cn

http://www.ruh.ac.lk/ruh/

University of Suleyman Demirel, Turkey

Breeding for ideal plant type

H, Baydar

Email:baydar@ziraat,sdu,edu,tr

https://w3.sdu.edu.tr/international

Izmir Institute of Tech., Turkey

Genome sequencing and SNP based characterization of the high oil crop

Ayse Ozgur Uncu

Email: samidoganlar@iyte.edu.tr

http://www.iyte.edu.tr/AnaSayfa.aspx?d=ENG

1.2 Appendix II: Sesame Genetic Resources and Varieties Developed Through International Sesame Breeding

Cultivar

Important traits

Cultivation location

Zhongzhi13

High oil content, improved variety

China

Baizhima and Mishuozhima

Land races and both contain multiple loci for several agronomic traits

China

Morada

Moderate branching

Venezuela

dr-45

Determinate, mutant of ‘No. 45’

Israel

dt-4, dt-5 and dt-6

Determinate, mutants of Çamdibi

Israel

dt-1, dt-2 and dt-3

Determinate, mutants of Muganl 1-57

Israel

SIK 031 and SIK 013

Resistance to white leaf spot,

China

SIK 031 and SPS 045

Resistance to angular leaf spot

China

‘S2’ and ‘H4’

Stable resistant to Fusarium wilt.

Egypt

Sanliurfa-63189

Resistant to Fusarium wilt

Turkey

SG 22, SG 55, SG 72 and SG 33

Resistant to bacterial blight

Pakistan

Zhuzhi 4”

High yielding

China

D248A

High yielding MS line

China

95 ms-2A and 95 ms-5A

GMS lines

China

Zhonghi 11,12,14

High yielding

China

Ezhi 1, 2, 4

High yielding

China

Zhu 0J3, 9-4155, Hangzhi 2, 98-6204, Zhonghi 18 and 01-2658

High yielding restorer lines

China

AHY TIL 5, AHY TIL 12, RTH 1, AHYT 13, RTH 3, TKG-HY 5 and TKG-HY 4

All are experimental hybrids, 31.0–44.3% in seed yield and 13–48% in oil yield over TKG 22(Check).

India

IC-204078

Moderate branching, very early maturing, low plant height, small capsules, low yield potential

Andhra Pradesh, India

IC-204099

Less branched, early maturing, moderate

Andhra Pradesh, India

C-204337

Less branched, early maturity, medium tall, bold seeds, moderate yield potential, susceptible to phyllody

Rajasthan, India

C-204524

Moderate branching, medium maturity, relatively longer capsules, low yield potential, susceptible to phyllody

Gujrat, India

C-204628

Highly branched, medium tall, medium to late maturity, moderate yield potential

Karnataka, India

C-204653

Highly branched, medium to late maturity, tall and moderate to high yield potential

Kerala, India

C-204681

Highly branched, multilocular (6–8), early maturity, moderate yield potential

West Bengal, India

IC-204773

Highly branched bushy type, late maturity, photosensitive, resistance to phyllody and leaf roller

Nagaland, India

C-204814

Highly branched, medium to late maturity

Mizoram, India

C-204843

Medium branching, multilocular capsules, early

Bihar, India

C-205000

Highly branched bushy type, late maturity

Assam, India

C-205209

Moderate branching, late maturity,

Andhra Pradesh, India

IC-205314

Moderate branching, relatively long capsule

Uttar Pradesh, India

IC-205479

Less branched, early maturity, bold seeds

Himachal Pradesh, India

C-205509

Moderate branching, medium maturity

Odisha, India

C-205595

Moderate branching, late maturity, tall, low yield potential

Odisha, India

IC-205730

Unbranched, medium maturity, relatively long capsules

Rajasthan, India

IC-205817

Moderately branched, relatively long capsules

Tamil Nadu, India

EC-346125-1

Moderately branched, tall, medium-sized capsules, early

Greece

EC-346489

Late maturity, small capsules, white seeds

Afghanistan

EC-346987

Moderately branched, medium-sized capsules

Unknown

EC-377025

Unbranched, glabrous stem, long capsules, low yield potential

Somalia

DLH-2 (S. mulayanum)

Branched, thin glabrous stem, tall, purple flower, black seeds, low susceptibility to phyllody

Delhi, India

SVPR 1

White seed, selection from Western Ghats White

Srivilliputhur, India

VRI 1

Brown seed, Pureline selection from Tirukattupali local

Vridhachalam, India

VRI 2

Reddish brown seed

Vridhachalam, India

VS07023

Landraces, brown seed

Vridhachalam, India

MD 1

Landraces, white seed

Madurai, India

MD 2

Landraces, white seed

Madurai, India

MD 3

Landraces, white seed

Madurai, India

MD 4

Landraces, white seed

Madurai, India

MD 5

Landraces, white seed

Madurai, India

NIC-7943

Shy branching

India

SP-41, VOSI-5846, VOSI-8458, NIC-8202, IS-101,IS-92-2,SI-3265-5

Moderate branching

India

TKG-22, SI-2973, GRT-83125, IS-56, NIC-16268, IS-355

Moderate branching

India

SI-2940, IC-382-2, GT-10, DSK-1, 49-E-SPS-6, ES-29, NIC-8559

Moderate branching

India

KANPUR LOCAL, KMR-77, ES-28, MT-6262, SI-2174, B-7-11

Moderate branching

India

KIS-357-A, KIS-297-2, RJS-29, EC-14121, EC-334952, IC-132408

Profuse branching

India

IS-172, IS-136, IS-750-1-84, IS -184-1, IS-146, SI-44, SI-3275, PjCU-36

Profuse branching

India

S-0448, IC-14160-1, S-0337, KMR-17, C-96128, S-0434,NIC-16236

Profuse branching

India

KIS-357-A, KIS-297-2, VOSI-5846, VOSI-8458, EC-14121, EC-334952,

Basal branching

India

IC-132408, NIC-8202, IS-101, IS-136, IS-146

Basal branching

India

NIC-8984, MT-67-25, MIC-8526,NAL/28/27/31/4, IC-14093, IS-351-2

Basal branching

India

SI-199-2-84, SI-3275, SI-982, PCU-37, PCU-38

Basal branching

India

IS-750-1-84, IS -184-1, IS-92-2, RJS-29, SP-41

Top branching

India

13,598, NIC-8559, NIC-8202, NIC-10622

Top branching

 

KIS-297-2, KIS-357-A, VOSI-5846, VOSI-8458, SP-41, EC-334952, IC-132408, NIC-8202

Dense hairiness of flower petal

India

EC-14121, RJS-29, MT-6262, NIC-8984

Sparse hairiness of flower petal

India

GT-10, TKG-22, RT-54

Light purple petal of flower

India

  1. In addition, a detailed list of Indian sesame improved varieties with specific traits has been mentioned in Table 15.7

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathy, S.K., Kar, J., Sahu, D. (2019). Advances in Sesame (Sesamum indicum L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_15

Download citation

Publish with us

Policies and ethics