Skip to main content

Biotechnological Approaches for Genetic Improvement of Sesame (Sesamum indicum L.)

  • Chapter
  • First Online:
Smart Plant Breeding for Field Crops in Post-genomics Era

Abstract

Sesame (Sesamum indicum L.) is an important oilseed crop cultivated since the ancient past for its healthy and quality oil. However, it is only in the recent past that modern genomic tools have been developed in sesame and deployed in sesame crop improvement. Knowledge of biotechnological tools and techniques developed in sesame in the post-genomics era would help to bridge the long-stagnated yield barrier and relieve the crop from a range of biotic and abiotic stresses. In this context, an attempt has been made to collect, analyze, organize, and present information on biotechnological approaches for sesame crop improvement. Further, in the foreground of the immediate research attention required for sesame crop improvement and the background of works accomplished so far, future perspectives have been discussed. The present chapter is intended to educate stakeholders of sesame research ecosystem: researchers, academicians, scientists, policymakers, research funders, students, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdellatef E, Sirelkhatem R, Mohamed-Ahmed MM, Radwan KH, Khalafalla MM (2008) Study of genetic diversity in Sudanese sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Afr J Biotech 7(24):4423–4427

    CAS  Google Scholar 

  • Ali MA, Niaz S, Abbas A, Sabir W, Jabran K (2009) Genetic diversity and assessment of drought tolerant sorghum landraces based on morph-physiological traits at different growth stages. POJ 2:214–227

    Google Scholar 

  • Anitha BK, Manivannan N, Vindhiya VP (2010) Molecular diversity among sesame varieties of Tamil Nadu. Electron J Plant Breed 1:447–452

    Google Scholar 

  • Ashi A (2006) Sesame (Sesamum indicum L.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton

    Google Scholar 

  • Athul V (2016) Evaluation of sesame genotypes for tolerance to waterlogging. M. Sc. (Ag.) Thesis, Kerala Agricultural University, Thrissur, pp 50–75

    Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak T et al (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao A, Zhang C, Huang Y et al (2020) Genome editing technology and application in soybean improvement oil. Crop Sci 5(1):31–40. https://doi.org/10.1016/j.ocsci.2020.03.001

    Article  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR Provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  • Barret BA, Kidwell KK, Fox PN (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the pacific northwest. Crop Sci 38:1271–1278

    Article  Google Scholar 

  • Bedigian D (2011) History of the cultivation and use of sesame. In: Bedigian D, Raton B (eds) Introduction to sesame: the genus Sesamum. CRC Press, Boca Raton

    Google Scholar 

  • Bedigian D (2014) A new combination for the Indian progenitor of sesame, Sesamum indicum (Pedaliaceae). Novon 23:5–13

    Article  Google Scholar 

  • Bedigian D, Harlan JR (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40(2):137–154. https://doi.org/10.1007/BF02859136

    Article  Google Scholar 

  • Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity of Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–34

    Article  CAS  Google Scholar 

  • Bhattacharjee M, Iqbal A, Singh S et al (2019) Genetic diversity in sesame. Bangladesh J Bot 48(3):497–506

    Article  Google Scholar 

  • Boru G, Van MG, Kronstad WE et al (2001) Expression and inheritance of tolerance to water logging stress in wheat. Euphytica 117:91–98

    Article  Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and horticultural germplasm management. Hortic Sci 30:1349–1356

    Google Scholar 

  • Burkill HM (1997) The useful plants of West Tropical Africa, 2nd edn. Families M-R. Roy Bot Gard Kew, London

    Google Scholar 

  • Casadesus J, Kaya Y, Bort J et al (2007) Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann Appl Biol 150:227–236

    Article  Google Scholar 

  • Chen Y, Wang Z, Ni H et al (2017) CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 60(5):520–523. https://doi.org/10.1007/s11427-017-9021-5

    Article  CAS  PubMed  Google Scholar 

  • Cheng FC, Jinn TR, Hou RC, Tzen JT (2006) Neuro protective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. Int J Biomedi Sci 2:284–288

    CAS  Google Scholar 

  • Cho Y-II, Park JH, Lee CW et al (2011) Evaluation of the genetic diversity and population structure of sesame (Sesamum indicum L.) using microsatellite markers. Genes Genomics 33:187–195

    Article  Google Scholar 

  • Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. https://doi.org/10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TS, Lookhart GL, Walker DE et al (1985) Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide-gel electrophoretic patterns. Crop Sci 25:1058–1063

    Article  Google Scholar 

  • Dixit A, Jin MH, Chung JW et al (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5:736–738

    Article  CAS  Google Scholar 

  • Dossa K, Diouf D, Wang L et al (2017) The emerging oilseed crop Sesamum indicum enters the “omics” era. Front Plant Sci 8:1154. https://doi.org/10.3389/fpls.2017.01154

    Article  PubMed  PubMed Central  Google Scholar 

  • Ercan AG, Taskin M, Turgut K (2004) Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resourc Crop Evol 51:599–607

    Article  CAS  Google Scholar 

  • Ellison EE, Nagalakshmi U, Gamo ME et al (2020) Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nature Plants 6(6):620–624

    Article  CAS  PubMed  Google Scholar 

  • Faldu RC (2019) Around 75 % of crop damaged due to excess rain. Times of India, 2 Oct 2019. https://timesofindia.indiatimes.com/city/rajkot/around-75-crop-damaged-due-to-excess-rain-faldu/articleshow/71399139.cms. Accessed 01 Mar 2021

  • FAOSTAT (2020). http://www.faoorg/faostat/en/#data/QC

  • Fuller DQ (2003) Further evidence on the prehistory of sesame. Asian Agri-Hist 7:127–137

    Google Scholar 

  • Gogoi LR, Singh SK, Sharma RN (2018) Assessment of genetic diversity in indigenous sesame genotypes. Int J Curr Microbiol Appl Sci 7(6):1509–1520

    Article  Google Scholar 

  • Hamrick JL, Godt MJ (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kanler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates Inc., Massachusetts, pp 43–63

    Google Scholar 

  • Haun W, Coffman A, Clasen BM et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940. https://doi.org/10.1111/pbi.12201

    Article  CAS  PubMed  Google Scholar 

  • Hilterbrandt VM (1932) Sesame (Sesamum indicum L.). Russian Bull Appl Bot Genet Plant Breed 9:1–14

    Google Scholar 

  • Hodgkin T, Qingyuan G, Xiurong Z et al (1999) Development of sesame core collections in China and India. In: Johnson RC, Hodkin T (eds) Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Hosur KH, Betha UK, Yadav KK et al (2020) Byproduct valorization of vegetable oil industry through biotechnological approach. In: Kashyap BK, Solanki MK, Kamboj DV, Pandey AK (eds) Waste to energy: prospects and applications. Springer, Singapore, pp 167–206. https://doi.org/10.1007/978-981-33-4347-4_8

    Chapter  Google Scholar 

  • Islam F, Gill RA, Ali DB et al (2016) Sesame. In: Gupta SK (ed) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic, Cambridge, pp 135–147. https://doi.org/10.1016/B978-0-12-801309-0.00006-9

    Chapter  Google Scholar 

  • Jansen R, Embden JD, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575. https://doi.org/10.1046/j.1365-294X.2001.01245.x

    Article  CAS  PubMed  Google Scholar 

  • Jin UH, Lee JW, Chung YS et al (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161(5):935–941

    Article  CAS  Google Scholar 

  • Jones HD (2003) Genetic modification transformation general principles. In: Thomas B (ed) Encyclopedia of applied plant sciences. Elsevier, Oxford, pp 377–382. https://doi.org/10.1016/b0-12-227050-9/00197-6

    Chapter  Google Scholar 

  • Kahsay TM, Mulubrhan MG, Mewael KA et al (2020) Morphological characterization and genetic diversity of sesame (Sesamum indicum L.) varieties cultivated in Ethiopia. Open Agric J14:117–129

    Google Scholar 

  • Karp A, Seberb O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    Article  CAS  Google Scholar 

  • Ke T, Dong C, Mao H et al (2011) Analysis of expression sequence tags from a full-length-enriched cDNA library of developing sesame seeds (Sesamum indicum). BMC Plant Biol 2011:11–180. https://doi.org/10.1186/1471-2229-11-180

    Article  CAS  Google Scholar 

  • Khidir MO (1997) Oil crops in Sudan. Khartoum University Press, Sudan

    Google Scholar 

  • Kihara H (1930) Genomanalyse bei Triticum and Aegilops II. Cytologia 2:106–156

    Article  Google Scholar 

  • Kim DH, Zur G, Danin-Poleg Y et al (2002) Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed 121:259–262

    Article  CAS  Google Scholar 

  • Kiranmayi SL, Roja V, Sivaraj N et al (2016) Genetic diversity analysis in sesame (Sesamum indicum L.) using morphological, biochemical and molecular techniques. Int J Appl Biol Pharm Technol 7(1):95–110

    CAS  Google Scholar 

  • Kobayashi T (1991) Cytogenetics of sesame (Sesamum). Elsevier Science Publishers, Amsterdam, pp 581–592

    Google Scholar 

  • Kozolwski TT (1984) Extent, causes and impact of flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic, London, pp 1–5

    Google Scholar 

  • Kumar AM, Kalpana NR, Sreevathsa R et al (2009) Towards crop improvement in capsicum (Capsicum annuum L.): Transgenics (uid A:hpt II) by a tissue-culture-independent Agrobacterium-mediated in planta approach. Sci Hortic 119:362–370

    Article  CAS  Google Scholar 

  • Kumar V, Sharma SN (2009) Assessment of genetic diversity of sesame (Sesamum indicum L.) genotypes using morphological and RAPD markers. Indian J Genet Plant Breed 69:209–218

    CAS  Google Scholar 

  • Kumaraswamy HH (2000) Development of regeneration protocol for producing transgenic indica rice. MSc thesis submitted to the University of Agricultural Sciences, Bengaluru, State of Karnataka, India

    Google Scholar 

  • Kumaraswamy HH, Jawaharlal J, Ranganatha ARG et al (2015) Safe sesame (Sesamum indicum L.) production: perspectives, practices and challenges. J Oilseed Res 32(1):1–24

    Google Scholar 

  • Kumaraswamy HH, Dinesh-Kumar V, Lavanya C et al (2022) Biotechnology approaches for genetic improvement of castor bean (Ricinus communis L.). In: Gopal SS, Wani SH (eds) Accelerated plant breeding, vol 4. Springer Nature, Switzerland AG, pp 359–418. https://doi.org/10.1007/978-3-030-81107-5_11

    Chapter  Google Scholar 

  • Kushwaha DS, Khan S (2011) In vitro regeneration of sesame (Sesamum indicum l.)—an important medicinal oil crop. Crop Res 42(1–3):125–130

    Google Scholar 

  • Laurentin HE, Karlovsky P (2006) Genetic relationship and diversity in sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu P, Yu J et al (2017) Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biol 17:152. https://doi.org/10.1186/s12870-017-1099-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher MF, Nasti RA, Vollbrecht M et al (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Sharma H, Sharma I et al (2014) Genetic diversity of agro-morphological characters in Indian wheat varieties using GT biplot. Afr J Crop Sci 8(9):1266–1271

    Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE et al (2001) Quantitative evaluation of genetic diversity germ plasm using molecular markers. Crop Sci 41:682–690

    Article  CAS  Google Scholar 

  • Maric S, Bede M, Martincic J et al (1998) Variability of some winter wheat traits from breeding process. Seed Sci J 15:421–433

    Google Scholar 

  • Mehra KL (2000) History of sesame in India and its cultural significance. Asian Agri-Hist 4:5–9

    Google Scholar 

  • Melo D, Alvarez-Orti M, Nunes MA et al (2021) Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 10(9):2108. https://doi.org/10.3390/foods10092108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metakovsky EV, Branlard G (1998) Genetic diversity of French common wheat germplasm based on gliadin alleles. Euphytica 96:09–218

    Google Scholar 

  • Miao H, Ju M, Wang H et al (2021) Tissue culture and genetic transformation in sesame. In: Miao H, Zhang H, Kole C (eds) The sesame genome. Springer International Publishing, Cham, pp 131–144. https://doi.org/10.1007/978-3-319-98098-0_6

    Chapter  Google Scholar 

  • Mukherji S (1947) Relation of total soluble solids in the cell sap of Sesamum species to the degree of susceptibility and resistance to Antigastra (Lepidoptera–Pyralidæ) attack. Nature 160(4055):95–96. https://doi.org/10.1038/160095a0

    Article  Google Scholar 

  • Murray BG (2017) Plant diversity conservation. In: Thomas B, Murray BG, Denis J (eds) Murphy encyclopedia of applied plant sciences, 2nd edn. Academic Press, pp 289–308. https://doi.org/10.1016/B978-0-12-394807-6.00047-2

    Chapter  Google Scholar 

  • Nayar MN, Mehra KL (1970) Sesame: its uses, botany, cytogenetics and origins. Econ Bot 24:20–31

    Article  Google Scholar 

  • Nimmakayala P, Perumal R, Muruli S et al (2011) Sesamum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources oilseed. Springer, Berlin, Heidelberg

    Google Scholar 

  • Nunes MA, Costa ASG, Bessada S et al (2018) Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid- and water-soluble components. Sci Total Environ 644:229–236

    Article  Google Scholar 

  • Nyonggesa B, Beatrice A, Gudu S, Dangasuk O, Augustino O (2014) Genetic relationship between sesame (Sesamum indicum L.) and related wild species based on chromosome counts and isozyme markers. Afr J Agric Res 9:1052–1060

    Article  Google Scholar 

  • Osman HE (1985) Sesame growing in the Sudan. In: Sesame and safflower status and potential FAO plant production and protection paper 99

    Google Scholar 

  • Pagnotta M, Mondini L, Atallah M (2005) Morphological and molecular characterization of Italian emmer wheat accessions. Euphytica 146:29–37

    Article  Google Scholar 

  • Pandey SK, Das A, Rai P et al (2015) Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiol Mol Biol Plant 21(4):519–529

    Article  CAS  Google Scholar 

  • Park JH, Suresh S, Piao XM et al (2014) Application of Simple Sequence Repeat (SSR) markers for the discrimination of Korean and Chinese sesame (Sesamum indicum L.) accessions. Plant Breed Biotechnol 2(1):80–87

    Article  Google Scholar 

  • Pathak N, Rai AK, Kumari R (2014) Value addition in sesame: a perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev 8:147–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Penna S, Sagi L, Swennen R (2002) Positive selectable marker genes for routine plant transformation. In Vitro Cell Dev Biol-Plant 38:125–128. https://doi.org/10.1079/IVP2001272

    Article  CAS  Google Scholar 

  • Purru S, Sahu S, Rai S et al (2018) GinMicrosatDb: a genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiol Mol Biol Plants 24(5):929–937. https://doi.org/10.1007/s142298-018-0558-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pusadkar P, Eswaran K, Bonde S et al (2015) Sesame (Sesamum indicum L.) importance and its high quality seed oil: a review. Trend Biosci 8(15):3900–3906

    Google Scholar 

  • Qin L, Li J, Wang Q et al (2020) High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotech J 18(1):45–56. https://doi.org/10.1111/pbi.13168

    Article  CAS  Google Scholar 

  • Raja A, Jayabalan N (2011) In vitro shoot regeneration and flowering of sesame (Sesamum indicum L.) cv. SVPR-1. J Agric Technol 7(4):1089–1096

    Google Scholar 

  • Ramprasad E, Senthilvel S, Jatoth JL et al (2017) An insight into morphological and molecular diversity in Indian sesame cultivars. Indian J Genet Plant Breed 77(2):271–277

    Article  Google Scholar 

  • Ranganatha ARG, Panse RK, Panday AK, Deshmukh MR (2014) Strategies for maximizing sesame and Niger production. In: Recent advances in weed management, directorate of weed science research, Jabalpur. Madhya Pradesh, India

    Google Scholar 

  • Rao VR, Riley KW (1994) The use of biotechnology for conservation and utilization of plant genetic resources. PGR Newslett 97:3–20

    Google Scholar 

  • Rao SVK, Yepuri KV, Surapaneni M et al (2012) Genetic diversity and DNA fingerprinting in sesame (Sesamum indicum L.) cultivars of ANGRAU. Asian Aust J Plant Sci Biotechnol 6:98–101

    Google Scholar 

  • Sangeeta J, Gohil VN, Chaudhari SB et al (2019) Water logging stress: its nature, impact and integrated breeding strategies to improve water logging tolerance in sesame. http://kcgjournal.org/kcg/wpcontent/uploads/Science/issue19/Issue19 Jadav Sangeeta&DrVN&DrSB&ProfKrunal.pdf. Accessed 01.03.2021

  • Sanghavi N, Lashmi-Patel (2021) 70% crop loss was reported in major parts of Gujarat and Saurashtra. Ahmedabad Mirror, 1 Sept 2020. https://ahmedabadmirror.indiatimes.com/ahmedabad/others/farmers-lose-70-of-crops-to-rain/articleshow/77859305.cms. Accessed 01.03.2021

  • Sarkar PK, Khatun A, Singha A (2016) Effect of duration of water-logging on crop stand and yield of sesame. Int J Innov Appl Stud 14(1):1–6

    Google Scholar 

  • Sarkis JR, Michel I, Tessaro IC et al (2014) Optimization of phenolics extraction from sesame seed cake. Sep Purif Technol 122:506–514

    Article  CAS  Google Scholar 

  • Schlotterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–66

    Article  PubMed  Google Scholar 

  • Schut JW, Qi X, Stam P (1997) Association between relationship measures based on aflp markers, pedigree data and morphological traits in barley. Theor Appl Genet 95:1161–1168

    Article  CAS  Google Scholar 

  • Seegler CJP (1983) OIl plants in Ethiopia, their taxonomy and agricultural significance. Centre for Agricultural Publishing and Documentation, Wgeningen

    Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Seo HY, Kim YJ, Park TI et al (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Dev Biol Plant 43(3):209–214. https://doi.org/10.1007/s11627-006-9017-2

    Article  CAS  Google Scholar 

  • Shashidhara N, Santosh D, Ravikumar H et al (2011) Exogeneous and endogeneous contaminations in sesame tissue culture—boon or bane. Int J Agric Environ Biotechnol 4:103–106

    Google Scholar 

  • Shivhare N, Satsangee N (2012) Wonders of sesame: nutraceutical uses and health benefits. pp 63–68. https://doi.org/10.1007/978-3-642-23394-4_13

  • Shu Z, Liu L, Geng P et al (2019) Sesame cake hydrolysates improved spatial learning and memory of mice. Food Biosci 31:100440

    Article  CAS  Google Scholar 

  • Sreepriya S, Girija T (2020) Assessing the role of ameliorants based on physiological traits in sesame under waterlogged condition. J Crop Weed 16(2):46–51

    Article  Google Scholar 

  • Stansfield WD (1986) Theory and problems of genetics. McGraw-Hill Book Company, New York

    Google Scholar 

  • Suh MC, Kim MJ, Hur CG et al (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123

    Article  PubMed  Google Scholar 

  • Tabatabaei I, Pazouki L, Bihamta MR et al (2011) Genetic variation among Iranian sesame (Sesamum indicum L.) accessions vis-à-vis exotic genotypes on the basis of morpho-physiological traits and RAPD. Aust J Crop Sci 5(11):1396–1407

    Google Scholar 

  • The-Angiosperm-Phylogeny-Group, Chase MW, Christenhusz MJM et al (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linnean Soc 141:399–436

    Article  Google Scholar 

  • Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939. https://doi.org/10.1111/j.1365-313x.2004.02016.x

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Miller JC, Lee Y-L et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651. https://doi.org/10.1038/nature03556

    Article  CAS  PubMed  Google Scholar 

  • Van Rheenen HA (1973) Major problems of growing sesame (Seamum indicum L) in Nigeria. Wageningen, Netherlands 73(12):130–138

    Google Scholar 

  • Wadeyar BS, Lokesha R (2011) Studies on high frequency shoot regeneration in sesame (Sesamum indicum L.). Plant Tissue Cult Biotechnol 21(1):45–52

    Article  Google Scholar 

  • Wang L, Zhang Y, Qi X et al (2012a) Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Acta Physiol Plant. 34:2241–2249. https://doi.org/10.1007/s11738-012-1024-9

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Qi X et al (2012b) Development and characterization of 59 polymorphic cDNA-SSR markers for the edible oil crop Sesamum indicum (Pedaliaceae). Am J Bot 99:e394–e398

    Article  PubMed  Google Scholar 

  • Wang L, Yu S, Tomg C et al (2014a) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Han X, Zhang Y et al (2014b) Deep resequencing reveals allelic variation in Sesamum indicum. BMC Plant Biol 14:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yu J, Li D, Zhang X (2014c) Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum. Plant Cell Physiol 56(1):e2. https://doi.org/10.1093/pcp/pcu175

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li D, Zhang Y et al (2016) Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS One 11(3):e0149912. https://doi.org/10.1371/journal.pone.0149912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LB, Zhang HY, Zheng YZ et al (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genomics 31:199–208. https://doi.org/10.1007/BF03191152

    Article  CAS  Google Scholar 

  • Wei W, Qi X, Wang L et al (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Miao H, Zhang H (2012) De novo transcriptome sequencing and analysis of sesame growth and development. Sci Agric Sin 45:1246–1256

    CAS  Google Scholar 

  • Wei X, Wang L, Zhang Y et al (2014) Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules (Basel, Switzerland) 19:5150–5162

    Article  PubMed  Google Scholar 

  • Wei X, Liu K, Zhang Y et al (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Zhu X, Yu J et al (2016) Identification of sesame genomic variations from genome comparison of landrace and variety. Front Plant Sci 7:1169. https://doi.org/10.3389/fpls.2016.01169

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Gong H, Yu J et al (2017) SesameFG: an integrated database for the functional genomics of sesame. Sci Rep 7:2342

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438–448

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M et al (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tissue Org Cult 103(3):377–386. https://doi.org/10.1007/s11240-010-9791-8

    Article  CAS  Google Scholar 

  • Yang M, Liu H, Zhou T et al (2017) Production and identification of F1 interspecific hybrid between Sesamum indicum and wild relative S. indicatum. Sci Agric Sin 50(10):1763–1771

    Google Scholar 

  • Yepuri V, Surapaneni M, Kola VSR et al (2013) Assessment of genetic diversity in sesame (Sesamum indicum L.) genotypes, using EST-derived SSR markers. J Crop Sci Biotechnol 16:93–103

    Article  Google Scholar 

  • Yi DK, Kim KJ (2011) Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PLoS One 7:e35872

    Article  Google Scholar 

  • You J, Li D, Yang L et al (2022) CRISPR/Cas9-mediated efficient targeted mutagenesis in sesame (Sesamum indicum L.). Front Plant Sci 13:935825. https://doi.org/10.3389/fpls.2022.935825

    Article  PubMed  PubMed Central  Google Scholar 

  • Young J, Zastrow-Hayes G, Deschamps S et al (2019) CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement. Sci Rep 9(1):6729. https://doi.org/10.1038/s41598-019-43141-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukawa Y, Takaiwa F, Shoji K et al (1996) Structure and expression of two seed-specific cDNA clones encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum L. Plant Cell Physiol 37(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Winkler H (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Verlag Fischer, Jena

    Book  Google Scholar 

  • Zarkti H, Quabbou H, Udupa SM et al (2012) Agro-morphological variability in durum wheat landraces of Morocco. Aust J Crop Sci 6(7):1172–1178

    Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wei L, Miao H et al (2012) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics 13:316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Wang L et al (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401. https://doi.org/10.1186/gb-2013-14-1-401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7(1):12617. https://doi.org/10.1038/ncomms12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440. https://doi.org/10.1038/nbt.3811

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Kumaraswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumaraswamy, H.H. et al. (2023). Biotechnological Approaches for Genetic Improvement of Sesame (Sesamum indicum L.). In: Sharma, D., Singh, S., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Field Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-8218-7_11

Download citation

Publish with us

Policies and ethics