Skip to main content

Microbially Originated Polyhydroxyalkanoate (PHA) Biopolymers: An Insight into the Molecular Mechanism and Biogenesis of PHA Granules

  • Chapter
  • First Online:
Sustainable Biotechnology- Enzymatic Resources of Renewable Energy

Abstract

Microorganisms especially bacteria and cyanobacteria have the ability to synthesize polyhydroxyalkanoates (PHAs) granules as carbon and energy storage compounds within their cells. Owing to eco-friendly, biodegradability, modifiable mechanical properties, non-toxicity, biocompatibility, hydrophobicity, cellular growth support, piezoelectricity, attachment without carcinogenic effects, optical purity and desired surface modifications, the PHAs have received substantial attention towards research as well as commercial ventures and comparable to non-biodegradable conventional plastics presently in use. Microbial PHA biosynthetic pathways are grouped into four types, where PHA synthases are the main enzymes. The PHA synthases exploit the hydroxyacyl-CoAs as substrates and catalyze the covalent bond formation among the hydroxyl group of one along with the carboxyl group of other hydroxyalkanoate that result into the formation of PHAs. Depending on the specificity of substrate as well as components of subunit, PHA synthases are grouped into four types, i.e., class I synthesizing Short-Chain-Length (SCL) PHAs (represented by the bacterium Cupriavidus necator), class II synthesizing Medium-Chain-Length (MCL) PHAs (represented by the bacterium Pseudomonas putida), class III (represented by bacterial species such as Allochromatium vinosum), and class IV PHA synthases (so far represented only by Bacillus sp., B. megaterium). Interestingly, these PHA synthases have a preserved cysteine residue as a catalytic active site to which the resulting PHA chain is linked through covalent bond. Overall, this chapter gives an overview on the structure and genes of PHA synthases including PHA biosynthetic routes, mechanism of PHAs polymerization together with biogenesis of PHA granules and phasins as major PHA granule-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe C, Taima Y, Nakamura Y, Doi Y (1990) New bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-fluoroalkanoates produced by Pseudomonas oleovorans. Polym Commun 31:404–406

    Google Scholar 

  • Aeschelmann F, Carus M, Baltus W (2015) Bio-based building blocks and polymers in the world, capacities, production and applications: status quo and trends towards 2020 (www.biobased.eu/markets)

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    Article  PubMed  CAS  Google Scholar 

  • Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11:19–27

    Article  CAS  Google Scholar 

  • Alves LP, Teixeira CS, Tirapelle EF, Donatti L, Tadra-Sfeir MZ, Steffens MB, de Souza EM, de Oliveira Pedrosa F, Chubatsu LS, Müller-Santos M (2016) Backup expression of the PhaP2 phasin compensates for phaP1 deletion in Herbaspirillum seropedicae, maintaining fitness and PHB accumulation. Front Microbiol 7:739

    PubMed  PubMed Central  Google Scholar 

  • Amara AA, Rehm BHA (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 374:413–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ansari S, Yasin D, Fatma T (2016) Key insights of natural bioplastic polyhyroxybutyrate (PHB) synthesis in cyanobacteria. Am J PharmTech Res

    Google Scholar 

  • Antonio RV, Steinbüchel A, Rehm BH (2000) Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett 182:111–117

    Article  PubMed  CAS  Google Scholar 

  • Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria- the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2002) The synthesis of short and medium chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans. J Ind Microbiol Biotechnol 28:147–153

    Article  PubMed  CAS  Google Scholar 

  • Backstrom BT, Brockelbank JA, Rehm BH (2007) Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol 7:3. https://doi.org/10.1186/1472-6750-7-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballard DGH, Holmes PA, Senior PJ (1987) Formation of polymers of β-hydroxybutyric acid in bacterial cells and a comparison of the morphology of growth with the formation of polyethylene in the solid state. In: Fontanille M, Guyot A (eds) Recent advances in mechanistic and synthetic aspects of polymerization. Reidel, Kluwer, pp 293–314

    Chapter  Google Scholar 

  • Beeby M, Cho M, Stubbe J, Jensen GJ (2012) Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha. J Bacteriol 194:1092–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernard M (2014) Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. Univ Saskatchewan Undergraduate Res J 1:1–14

    Google Scholar 

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    Article  CAS  Google Scholar 

  • Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85

    Article  Google Scholar 

  • Bhati R, Mallick N (2016) Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. J Appl Phycol 28:161–168

    Article  CAS  Google Scholar 

  • Bhati R, Samantaray S, Sharma L, Mallick N (2010) Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol J 5:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225

    Article  PubMed  CAS  Google Scholar 

  • Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  PubMed  CAS  Google Scholar 

  • Braunegg G, Gilles L, Klaus F (1998) Polyhydroxyalkanoates biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    Article  PubMed  CAS  Google Scholar 

  • Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) Granules have no phospholipids. Sci Rep 6:26612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind 1:53–60

    CAS  Google Scholar 

  • Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ (2010) Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrom D (1992) Production of poly-β-hydroxybutyrate and poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250

    Google Scholar 

  • Byrom D (1994) Polyhydroxyalkanoate. In: Mobley DP (ed) Plastics from microbes: microbial synthesis of polymers and polymer precursors. Hanser, Munich, pp 5–33

    Google Scholar 

  • Cai S, Cai L, Liu H, Liu X, Han J, Zhou J, Xiang H (2012) Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl Environ Microbiol 78:1946–1952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell J, Stevens SE Jr, Bankwill DL (1982) Accumulation of poly-β-hydroxybutyrate in Spirulina platensis. J Bacteriol 149:361–366

    Google Scholar 

  • Carr NG (1966) The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii. Biochem Biophys Acta 120:308–310

    PubMed  CAS  Google Scholar 

  • Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Biores Technol 100:5996–6009

    Article  CAS  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Biores Technol. https://doi.org/10.1016/j.biortech.2018.06.004 (in press)

  • Chang SI, Hammes GG (1990) Structure and mechanism of action of a multifunctional enzyme: fatty acid synthase. Acc Chem Res 23:363–369

    Article  CAS  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  PubMed  CAS  Google Scholar 

  • Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Microbiology monographs. Springer, Berlin, pp 17–38

    Google Scholar 

  • Chen GQ, Wu Q (2005a) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005b) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55

    Article  PubMed  CAS  Google Scholar 

  • Chen SY, Chien YW, Chao YP (2014) In vivo immobilization of d-hydantoinase in Escherichia coli. J Biosci Bioeng 118:78–81

    Article  PubMed  CAS  Google Scholar 

  • Cho M, Brigham CJ, Sinskey AJ, Stubbe J (2012) Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo. Biochemistry 51:2276–2288

    Article  PubMed  CAS  Google Scholar 

  • Choi MH, Yoon SC (1994) Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl Environ Microbiol 60:3245–3254

    PubMed  PubMed Central  CAS  Google Scholar 

  • Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  • Curley JM, Hazer B, Lenz RW (1996) Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29:1762–1766

    Article  CAS  Google Scholar 

  • De Koning GJM, Maxwell IA (1993) Biosynthesis of poly-(R)-3-hydroxyalkanoate: an emulsion polymerization. J Environ Polym Degrad 1:223–226

    Article  Google Scholar 

  • de Koning GJM, van Bilsen HMM, Lemstra PJ, Hazenberg W, Witholt B, Preusting H, van der Galien JG, Schirmer A, Jendrossek D (1994) A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090–2097

    Article  Google Scholar 

  • De Morais MG, Stillings C, Roland D, Rudisile M, Pranke P, Costa JAV, Wendorff J (2015) Extraction of poly(3-hydroxybutyrate) from Spirulina LEB 18 for developing nanofibers. Polímeros 25:161–167

    Article  Google Scholar 

  • Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64:177–186

    Article  PubMed  CAS  Google Scholar 

  • DiGregorio BE (2009) Biobased performance bioplastic. Mirel Chem Biol 16:1–2

    Article  PubMed  CAS  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH Publishers, New York

    Google Scholar 

  • Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707

    Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635

    Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1989) Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced from gamma-butyrolactone and butyric acid by Alcaligenes eutrophus. Polym Commun 30:169–171

    Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1990) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111

    Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Google Scholar 

  • Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31:8921–8930

    Article  PubMed  CAS  Google Scholar 

  • Doug S (2010) Bioplastics: technologies and global markets. BCC research reports PLS050A

    Google Scholar 

  • Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156

    Article  CAS  Google Scholar 

  • Eggers J, Steinbuchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J Bacteriol 195:3213–3223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eggink G, van der Wal H, Huijberts GNM, de Waard P (1993) Oleic acids as a substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crops Prod 1:157–163

    Article  Google Scholar 

  • Eggink G, de Waard P, Huijberts GNM (1995) Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol (Suppl) 41:14–21

    Article  CAS  Google Scholar 

  • Ellar D, Lundgren DG, Okamura K, Marchessault RH (1968) Morphology of poly-beta-hydroxybutyrate granules. J Mol Biol 35:489–502

    Google Scholar 

  • Fritzsche K, Lenz RW, Fuller R (1990a) An unusual bacterial polyester with a phenyl pendant group. Macromol Chem 191:1957–1965

    Article  CAS  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990b) Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol 12:85–91

    Article  PubMed  CAS  Google Scholar 

  • Fritzsche K, Lenz WR, Fuller RC (1990c) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers. 1. Peroxide crosslinking. Polymer 35:4358–4367

    Article  CAS  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers. 2. Sulfur vulcanization. Polymer 35:4368–4375

    Article  CAS  Google Scholar 

  • Gao X, Yuan XX, Shi ZY, Shen XW, Chen JC, Wu Q, Chen GQ (2012) Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene. Microb Cell Fact 11:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[(R)-(2)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci 92:6279–6283

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of the of PHB granules. J Bacteriol 175:5289–5293

    Google Scholar 

  • Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320

    Google Scholar 

  • Global Polyhydroxyalkanoate (PHA) Market (Sources, Applications, Geography)—Size, Share, Global Trends, Company Profiles, Demand, Insights, Analysis, Research, Report, Opportunities, Segmentation and Forecast, 2012–2020. Retrieved from http://www.reportsandintelligence.com/polyhydroxyalkanoate-market

  • Global Trends and Forecasts to 2018—Polyhydroxyalkanoate (PHA) Market, By Application (Packaging, Food Services, Bio-medical, Agriculture) & Raw Material. Retrieved from http://www.marketsandmarkets.com

  • Gómez Cardozo JR, Mora Martínez AL, Yepes Pérez M, Correa Londoño GA (2016) Production and characterization of polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. Int J Polym Sci 2016:6541718. https://doi.org/10.1155/2016/6541718

    Article  CAS  Google Scholar 

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201–207

    Article  PubMed  CAS  Google Scholar 

  • Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669

    Article  PubMed  CAS  Google Scholar 

  • Griebel RJ, Merrick JM (1971) Metabolism of poly-β-hydroxybutyrate: effect of mild alkaline extraction on native poly-β-hydroxybutyrate granules. J Bacteriol 108:782–789

    PubMed  PubMed Central  CAS  Google Scholar 

  • Griebel R, Smith Z, Merrick JM (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7:3676–3681

    Article  PubMed  CAS  Google Scholar 

  • Haase S, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24:157–162

    Article  CAS  Google Scholar 

  • Hai T, Hein S, Steinbüchel A (2001) Multiple evidence for widespread and general occurrence of type-III PHA synthases in cyanobacteria and molecular characterization of the PHA synthases from two thermophilic cyanobacteria: Chlorogloeopsis fritschii PCC 6912 and Synechococcus sp. strain MA19. Microbiology 147:3047–3060

    Article  PubMed  CAS  Google Scholar 

  • Hängii UJ (1990) Pilot scale production of PHB with Alcaligens latus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, pp 60–65

    Google Scholar 

  • Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3:101–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Dawes AE (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    Article  CAS  Google Scholar 

  • Hazenberg W, Witholt B (1997) Efficient production of medium chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: economic considerations. Appl Microbiol Biotechnol 48:588–596

    Article  CAS  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1994) Biosynthesis of methylbranched poly(β-hydroxyalkanoate)s by Pseudomonas oleovorans. Macromolecules 27:45–49

    Article  CAS  Google Scholar 

  • Hein S, Tran H, Steinbüchel A (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170:162–170

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann N, Rehm BH (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann N, Rehm BH (2005) Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol Lett 27:279–282

    Article  PubMed  CAS  Google Scholar 

  • Huijberts GNM, de Rijk TC, de Ward P, Eggink G (1995) 13C nuclear magnetic resonance study of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666

    Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Katzemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    PubMed  CAS  Google Scholar 

  • Huong KH, Shantini K, Sharmini R, Amirul AA (2017) Exploring the potential of 1-pentanol and oleic acid for optimizing the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus sp. USMAA1020. Arab J Sci Eng 42:2313–2320

    Article  CAS  Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J (2000) Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39:3927–3936

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Yuan W, Wodzinska J, Park J, Sinskey AJ, Stubbe J (2001) Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry 40:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Jia K, Cao R, Hua DH, Li P (2016) Study of class I and class III polyhydroxyalkanoate (PHA) synthases with substrates containing a modified side chain. Biomacromol 17:1477–1485

    Article  CAS  Google Scholar 

  • Jossek R, Reichelt R, Steinbuchel A (1998) In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol 49:258–266

    Article  PubMed  CAS  Google Scholar 

  • Jurasek L, Marchessault RH (2004) Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 64:611–617

    Article  PubMed  CAS  Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stabil 83:79–86

    Google Scholar 

  • Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kato M, Bao HJ, Kang C-K, Fukui T, Doi Y (1996) Production of novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Google Scholar 

  • Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329

    Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1991) Preparation and characterization of poly(β-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 24:5256–5360

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857

    Article  CAS  Google Scholar 

  • Kim OY, Gross RA, Rutherford DR (1995) Bioengineering of poly(β-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can J Microbiol 41:32–43

    Article  CAS  Google Scholar 

  • Koller M, Maršálek L (2015) Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis?. Curr Biotechnol 4:464–480

    Article  CAS  Google Scholar 

  • Kuchta K, Chi L, Fuchs H, Pötter M, Steinbüchel A (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromol 8:657–662

    Article  CAS  Google Scholar 

  • Kumar A, Srivastava JK, Mallick N, Singh AK (2015) Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects. Recent Pat Biotechnol 9:4–21

    Article  PubMed  CAS  Google Scholar 

  • Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    Article  CAS  Google Scholar 

  • Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–357

    Article  PubMed  CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly(R)-3-hydroxyalkanoates and poly(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lama L, Nicolaus B, Calandrelli V, Maria MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C. Phytochemistry 42:655–659

    Article  CAS  Google Scholar 

  • Langenbach S, Rehm BH, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    Article  PubMed  CAS  Google Scholar 

  • Lee SY (1995) Bacterial polydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  Google Scholar 

  • Lee SY, Park SJ (2002) Biosynthesis and fermentative production of SCL-MCL-PHAs. In: Doi Y, Steinbüchel A (eds) Biopolymers Vol. 3a. Wiley/VCH, Weinheim, pp 317–336

    Google Scholar 

  • Lee SY, Choi J, Wong HW (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36

    Article  PubMed  CAS  Google Scholar 

  • Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947

    Article  PubMed  CAS  Google Scholar 

  • Li QA, Chen QA, Li MJ, Wang FS, Qi QS (2011) Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli. New Biotech 28:92–95

    Article  CAS  Google Scholar 

  • Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209:135–150

    Article  PubMed  CAS  Google Scholar 

  • Liebergesell M, Mayer F, Steinbüchel A (1993) Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl Microbiol Biotechnol 40:292–300

    Article  CAS  Google Scholar 

  • Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 78:227–232

    Google Scholar 

  • Liebergesell M, Sonomoto K, Madkour M, Mayer F, Steinbuchel A (1994) Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem 226:71–80

    Article  PubMed  CAS  Google Scholar 

  • Liebergesell M, Rahalkar S, Steinbüchel A (2000) Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol 54:186–194

    Article  PubMed  CAS  Google Scholar 

  • Liu KL, Goh SH, Li J (2008) Controlled synthesis and characterizations of amphiphilic poly[(R, S)3-hydroxybutyrate]-poly(ethyleneglycol)-poly[(R, S)-3hydroxybutyrate] triblock copolymers. Polymer 49:732–741

    Article  CAS  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248

    Article  CAS  Google Scholar 

  • Lundgren DG, Pfister RM, Merrick JM (1964) Structure of poly(β-hydroxybutyric acid) granules. J Gen Microbiol 34:441–446

    Article  PubMed  CAS  Google Scholar 

  • Luo R, Chen J, Zhang L, Chen G (2006) Polyhydroxyalkanoate copolyesters produced by Ralstonia eutropha PHB−4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Biochem Engg J 32:218–225

    Article  CAS  Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci USA 89:839–842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol 25:43–53

    Article  PubMed  CAS  Google Scholar 

  • Madison LL, Huisiman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maestro B, Sanz JM (2017) Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microb Biotechnol (in press). https://doi.org/10.1111/1751-7915.12718

    Article  Google Scholar 

  • Mallick N, Sharma L, Singh AK (2007) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum: effects of metabolic inhibitors. J Plant Physiol 164:312–317

    Article  PubMed  CAS  Google Scholar 

  • Martin DP, Peoples OP, Williams SF, Zhong LH (1999) Nutritional and therapeutic uses of 3-hydroxyalkanoate oligomers. US Patent Appl 359086

    Google Scholar 

  • Masamune S, Walsh CT, Sinskey AJ, Peoples OP (1989) Poly-(R)3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl Chem 61:303–312

    Google Scholar 

  • Massieu L, Haces ML, Montiel T, Hernández-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378

    Article  PubMed  CAS  Google Scholar 

  • Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1:17–22

    Google Scholar 

  • McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181:585–592

    Google Scholar 

  • McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243

    Google Scholar 

  • Mendhulkar VD, Shetye LA (2017) Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind Biotechnol 13:85–93

    Article  CAS  Google Scholar 

  • Merrick JM (1965) Effect of polymyxin B, tyrocidine, gramicidin D, and other antibiotics on the enzymatic hydrolysis of poly-beta-hydroxybutyrate. J Bacteriol 90:965–969

    Google Scholar 

  • Merrick JM, Doudoroff M (1964) Depolymerization of poly-beta-hydroxybutyrate by an intracellular enzyme system. J Bacteriol 88:60–71

    PubMed  PubMed Central  CAS  Google Scholar 

  • Merrick JM, Lundgren DG, Pfister RM (1965) Morphological changes in poly-beta-hydroxybutyrate granules associated with decreased susceptibility to enzymatic hydrolysis. J Bacteriol 89:234–239

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioengg 82:512–514

    Article  CAS  Google Scholar 

  • Miyake M, Kataoka K, Shirai M, Asada Y (1997) Control of poly-β-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J Bacteriol 179:5009–5013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moldes C, Garcia P, Garcia JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moldes C, Farinos GP, de Eugenio LI, Garcia P, Garcia JL, Ortego F, Hernández-Crespo P, Castañera P, Prieto MA (2006) New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Appl Microbiol Biotechnol 72:88–93

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz GJ, Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate II. Enzymatic synthesis of D(-)-β-hydroxybutyryl coenzyme-A by an enoylhydrases from Rhodospirillum rubrum. Biochemistry 8:2748–2755

    Article  PubMed  CAS  Google Scholar 

  • Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282

    Article  PubMed  CAS  Google Scholar 

  • Müh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J (1999) PHA Synthase from Chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochemistry 38:826–837

    Article  PubMed  Google Scholar 

  • Muller S, Bley T, Babel W (1999) Adaptive responses of Ralstonia eutropha to feast and famine conditions analysed by flow cytometry. J Biotechnol 75:81–97

    Article  PubMed  CAS  Google Scholar 

  • Neumann L, Spinozzi F, Sinibaldi R, Rustichelli F, Pötter M, Steinbüchel A (2008) Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3hydroxybutyrate) granules. J Bacteriol 190:2911–2919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroyxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate limitation. Biotechnol Lett 23:1095–1099

    Article  CAS  Google Scholar 

  • Nobes GAR, Jurasek L, Marchessault RH, Martin DP, Putaux JL, Chanzy H (2000) Growth and kinetics of in vitro poly([R](-)-3-hydroxybutyrate) granules interpreted as particulate polymerization with coalescence. Macromol Rapid Commun 21:77–84

    Article  CAS  Google Scholar 

  • Numata K, Motoda Y, Watanabe S, Osanai T, Kigawa T (2015) Co-expression of two polyhydroxyalkanoate synthase subunits from Synechocystis sp. PCC 6803 by cell free synthesis and their specific activity for polymerization of 3-hydroxybutyryl-CoA. Biochemistry 54:1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Obruca S (2010) Controlled production and degradation of selected biomaterials. Doctoral thesis, Brno University of Technology

    Google Scholar 

  • Oeding V, Schlegel HG (1973) Beta-ketothiolase from Hydrogenomonas eutropha HI6 and its significance in the regulation of poly-beta-hydroxybutyrate metabolism. Biochem J 134:239–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, Tanaka K, Saito K, Hirai MY (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20:525–535

    Google Scholar 

  • Page WJ (1992) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol Rev 103:149–158

    Article  CAS  Google Scholar 

  • Panda B, Mallick N (2007) Enhanced poly-β-hydroxybutyrate accumulation in a unicellular cyanobactrium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44:194–198

    Article  PubMed  CAS  Google Scholar 

  • Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Biores Technol 97:1296–1301

    Article  CAS  Google Scholar 

  • Panda B, Sharma L, Singh AK, Mallick N (2008) Thin layer chromatographic detection of poly-β-hydroxybutyrate (PHB) and poly-β-hydroxybutyrate (PHV) in cyanobacteria. Ind J Biotechnol 7:230–234

    CAS  Google Scholar 

  • Parlane NA, Gupta SK, Rubio Reyes P, Chen S, Gonzalez-Miro M, Wedlock DN, Rehm BH (2016) Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications. ACS Biomater Sci Eng (In press). https://doi.org/10.1021/acsbiomaterials.6b00355

    Article  Google Scholar 

  • Peoples OP, Sinskey AJ (1989a) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identiication and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303

    Google Scholar 

  • Peoples OP, Sinskey AJ (1989b) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297

    Google Scholar 

  • Perepelkin KE (2005) Polymeric materials of the future based on renewable plant resources and biotechnologies: fibres, films and plastics. Fibre Chem 37:417–430

    Article  CAS  Google Scholar 

  • Pfeiffer D, Jendrossek D (2011) Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology 157:2795–2807

    Article  PubMed  CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Phithakrotchanakoon C, Champreda V, Aiba S, Pootanakit K, Tanapongpipat S (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77:1262–1268

    Article  PubMed  CAS  Google Scholar 

  • Plastics Europe (2015) Plastics-the Facts 2014/2015: an analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf

  • Plastics Europe (2016) Plastics-the Facts 2016: an analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/4315/1310/4805/plastic-the-fact-2016.pdf

  • Pötter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromol 6:552–560

    Article  CAS  Google Scholar 

  • Pötter M, Steinbüchel A (2006) Biogenesis and Structure of polyhydroxyalkanoate granules. Springer, Berlin, pp 109–136

    Google Scholar 

  • Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426

    Article  PubMed  Google Scholar 

  • Pötter M, Muller H, Steinbuchel A (2005) Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology 151:825–833

    Google Scholar 

  • Prieto MA, Buhler B, Jung K, Witholt B, Kessler B (1999) PhaF, a polyhydroxyalkanoate-granule associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    PubMed  PubMed Central  CAS  Google Scholar 

  • Punrattanasin W (2001) The utilization of activated sludge polyhydroxyalkanoates for the production of biodegradable plastics. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

    Google Scholar 

  • Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147:3353–3358

    Article  PubMed  CAS  Google Scholar 

  • Qi Q, Steinbuchel A, Rehm BH (2000) In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol 54:37–43

    Article  PubMed  CAS  Google Scholar 

  • Ravenstijn JTJ (2010) The state-of-the art on bioplastics: products, markets, trends and technologies. Polymedia, Lüdenscheid

    Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Reddy MV, Mohan SV (2015) Polyhydroxyalkanoates production by newly isolated bacteria Serratia ureilytica using volatile fatty acids as substrate: Bio-electro kinetic analysis. J Microb Biochem Technol 7:26–32

    CAS  Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 37:15–33

    Article  Google Scholar 

  • Rehm BH (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bio-particles. Curr Issues Mol Biol 9:41–62

    PubMed  CAS  Google Scholar 

  • Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  PubMed  CAS  Google Scholar 

  • Rehm BH, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273:24044–24051

    Article  PubMed  CAS  Google Scholar 

  • Rehm BH, Antonio RV, Spiekermann P, Amara AA, Steinbüchel A (2002) Molecular characterization of the poly(3hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594:178–190

    Article  PubMed  CAS  Google Scholar 

  • Samantaray S, Mallick N (2012) Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. J Appl Phycol 24:803–814

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2014) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J Appl Phycol 26:237–245

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2015) Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Curr Biotechnol 4:366–372

    Article  CAS  Google Scholar 

  • Sangkharak K, Prasertsan P (2012) Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. J Gen Appl Microbiol 58:173–182

    Article  PubMed  CAS  Google Scholar 

  • Sankhla SS, Bhati R, Singh AK, Mallick N (2010) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Biores Tecnol 101:1947–1953

    Article  CAS  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah DT, Tran M, Berger PA, Aggarwal P, Asrar J, Madden LA, Anderson AJ (2000) Synthesis and properties of hydroxy-terminated poly(hydroxyalkanoate)s. Macromolecules 33:2875–2880

    Article  CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  PubMed  CAS  Google Scholar 

  • Shamala TR, Vijayendra SV, Joshi GJ (2012) Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Braz J Microbiol 43:1094–1102

    Google Scholar 

  • Sharma L, Mallick N (2005a) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Biores Technol 96:1304–1310

    Article  CAS  Google Scholar 

  • Sharma L, Mallick N (2005b) Enhancement of poly-β-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 27:59–62

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Panda B, Singh AK, Mallick N (2006) Studies on poly-β-hydroxybutyrate synthase activity of Nostoc muscorum. J Gen Appl Microbiol 52:209–214

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Singh AK, Panda B, Mallick N (2007) Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Biores Technol 98:987–993

    Article  CAS  Google Scholar 

  • Sharma L, Srivastava JK, Singh AK (2016) Biodegradable polyhydroxyalkanoate thermoplastics substituting xenobiotic plastics: a way forward for sustainable environment. In: Singh A, Prasad SM, Singh RP (eds) Plant responses to xenobiotics. Springer, Singapore, pp 317–346

    Chapter  Google Scholar 

  • Shimizu R, Chou K, Orita I, Suzuki Y, Nakamura S, Fukui T (2013) Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiol 13:169–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastav A, Mishra SK, Mishra S (2010) Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46:255–260

    Article  PubMed  CAS  Google Scholar 

  • Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotech 15:63–67

    Article  CAS  Google Scholar 

  • Singh A (2009) Accumulation of a novel short-chain-length-long-chain-length polyhydroxyalkanoate co-polymer in a sludge-isolated Pseudomonas aeruginosa MTCC 7925. PhD thesis, Indian Institute of Technology, Kharagpur, India, pp 41–71

    Google Scholar 

  • Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46:350–357

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Mallick N (2009a) Exploitation of inexpensive substrates for production of a novel SCL–LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol 36:347–354

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Mallick N (2009b) SCL-LCL-PHA copolymer production by a local isolate, Pseudomonas aeruginosa MTCC 7925. Biotechnol J 4:703–711

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Mallick N (2017a) Biological system as a reactor for production of biodegradable thermoplastics, Polyhydroxyalkanoates. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. CRC Press Taylor and Francis, USA, pp 281–323

    Google Scholar 

  • Singh AK, Mallick N (2017b) Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett 364(20). https://doi.org/10.1093/femsle/fnx189

  • Singh AK, Mallick N (2017c) Pseudomonas aeruginosa MTCC 7925: Biofactory for Novel SCL-LCL-PHA. LAP Lambert Academic Publishing, Germany, pp 1–148

    Google Scholar 

  • Singh AK, Bhati R, Samantaray S, Mallick N (2013) Pseudomonas aeruginosa MTCC 7925: producer of a novel SCL-LCL-PHA co-polymer. Curr Biotechnol 2:81–88

    Article  CAS  Google Scholar 

  • Singh AK, Ranjana B, Mallick N (2015) Pseudomonas aeruginosa MTCC 7925 as a biofactory for production of the novel SCL-LCL- PHA thermoplastic from non-edible oils. Curr Botechnol 4:65–74

    Article  CAS  Google Scholar 

  • Singh AK, Sharma L, Mallick N, Mala J (2017) Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J Appl Phycol 29:1213–1232

    Article  CAS  Google Scholar 

  • Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song JJ, Yoon SC (1996) Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BMO1. Appl Environ Microbiol 62:536–544

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stal LJ, Heyer H, Jacobs G (1990) Occurrence and role of poly-hydroxy-alkanoates in the cyanobacterium Oscillatoria limosa. In: Dawes EA (ed) Novel biodegradable microbial polymers. Springer, pp 435–438

    Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton, New York, pp 124–213

    Google Scholar 

  • Steinbüchel A (1996) PHB and other polyhydroxyalkanoic acids. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, New York, pp 362–364

    Google Scholar 

  • Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    PubMed  Google Scholar 

  • Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230

    Article  Google Scholar 

  • Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Synthesis and production of poly(3-hydroxyvaleric acid) homopolymer by Chromobacterium violaceum. Appl Microbiol Biotechnol 39:443–449

    Article  Google Scholar 

  • Stubbe J, Tian J (2003) Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20:445–457

    Article  PubMed  CAS  Google Scholar 

  • Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P (2005) Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480

    Article  PubMed  CAS  Google Scholar 

  • Su L, Lenz RW, Takagi Y, Zhang S, Goodwin S, Zhong L, Martin DP (2000) Enzymatic polymerization of (R)-3-hydroxyalkanoates by a bacterial polymerase. Macromolecules 33:229–231

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Google Scholar 

  • Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. J Biosci Bioengg 95:77–81

    Article  CAS  Google Scholar 

  • Takahashi T, Miyake M, Tokiwa Y, Asada Y (1998) Improved accumulation of poly-3-hydroxybutyrate by a recombinant cyanobacterium. Biotechnol Lett 20:183–186

    Article  CAS  Google Scholar 

  • Tan IKP, Sudesh Kumar K, Theanmalar M, Gan SN, Gordon B (1997) Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol 47:207–211

    Article  CAS  Google Scholar 

  • Taroncher-Oldenburg G, Nishina K, Stephanopoulos G (2000) Identification and analysis of the polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 66:4440–4448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thakor NS, Patel MA, Trivedi UB, Patel KC (2003) Production of poly(β-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene. World J Microbiol Biotechnol 19:185–189

    Article  CAS  Google Scholar 

  • Tian J, He A, Lawrence AG, Liu P, Watson N, Sinskey AJ, Stubbe J (2005a) Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative western analysis and transmission electron microscopy. J Bacteriol 187:3825–3832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian J, Sinskey AJ, Stubbe J (2005b) Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase. Biochemistry 44:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Tian S-J, Lai W-J, Zheng Z, Wang H-X, Chen G-Q (2005c) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25

    Article  PubMed  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30

    Article  PubMed  CAS  Google Scholar 

  • Tirapelle EF, Muller-Santos M, Tadra-Sfeir MZ, Kadowaki MA, Steffens MB, Monteiro RA, Souza EM, Pedrosa FO, Chubatsu LS (2013) Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1-old partners, new players. PLoS ONE 8:e75066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toh PSY, Jau MH, Yew SP, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J Biosci 19:21–38

    Google Scholar 

  • Tomizawa S, Hyakutake M, Saito Y, Agus J, Mizuno K, Abe H, Tsuge T (2011) Molecular weight change of polyhydroxyalkanoate (PHA) caused by the PhaC subunit of PHA synthase from Bacillus cereus YB-4 in recombinant Escherichia coli. Biomacromol 12:2660–2666

    Article  CAS  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198

    Google Scholar 

  • Uchino K, Saito T, Gebauer B, Jendrossek D (2007) Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J Bacteriol 189:8250–8256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ushimaru K, Motoda Y, Numata K, Tsuge T (2014) Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase. Appl Environ Microbiol 80:2867–2873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verlinden RA, Hill DJ, Kenward CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Vincenzini M, De Philippis R (1999) Polyhydroxyalkanoates. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis Inc., USA, pp 292–312

    Google Scholar 

  • Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530

    Article  PubMed  CAS  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Sheng X, Equi RC, Trainer MA, Charles TC, Sobral BW (2007) Influence of the poly-3hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021. J Bacteriol 189:9050–9056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Zhu WF, Wang X, Chen X, Chen G-Q, Xu K (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173

    Article  CAS  Google Scholar 

  • Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77

    Article  PubMed  CAS  Google Scholar 

  • Wei DX, Chen CB, Fang G, Li SY, Chen GQ (2011) Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl Microbiol Biotechnol 91:1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15:390–394

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177:2425–2435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson DH, Wilkinson JF (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol 19:198–209

    Article  PubMed  CAS  Google Scholar 

  • Wodzinska J, Snell KD, Rhomberg A, Sinskey AJ, Biemann K, Stubbe J (1996) Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 118:6319–6320

    Article  CAS  Google Scholar 

  • Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616

    Article  PubMed  CAS  Google Scholar 

  • Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104

    Article  PubMed  CAS  Google Scholar 

  • Yao YC, Zhan XY, Zou XH, Wang ZH, Xiong YC, Zhang J, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830

    Article  PubMed  CAS  Google Scholar 

  • Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218

    Article  PubMed  CAS  Google Scholar 

  • York GM, Junker BH, Stubbe J, Sinskey AJ (2001a) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183:4217–4226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2001b) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Yasuo T, Lenz RW, Goodwin S (2000) Kinetic and mechanistic characterization of the polyhydroxybutyrate synthase from Ralstonia eutropha. Biomacromol 1:244–251

    Article  CAS  Google Scholar 

  • Zhang JY, Hao N, Chen GQ (2006) Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid. Appl Microbiol Biotechnol 71:222–227

    Article  PubMed  CAS  Google Scholar 

  • Zhang XJ, Luo RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromol 10:707–711

    Article  CAS  Google Scholar 

  • Zinn M, Hany R (2005) Tailored material properties of Polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411

    Article  CAS  Google Scholar 

  • Zou XH, Li HM, Wang S, Leski M, Yao YC, Yang XD, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Sharma, L., Srivastava, J.K., Mallick, N., Ansari, M.I. (2018). Microbially Originated Polyhydroxyalkanoate (PHA) Biopolymers: An Insight into the Molecular Mechanism and Biogenesis of PHA Granules. In: Singh, O., Chandel, A. (eds) Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-95480-6_14

Download citation

Publish with us

Policies and ethics