Skip to main content
Log in

New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new tool to provide an environmentally friendly way to deliver active proteins to the environment has been developed, based on the use of polyhydroxyalkanoate (PHA, bioplastic) granules. To illustrate this novel approach, a derived Cry1Ab insect-specific toxin protein was in vivo immobilized into PHA granules through the polypeptide tag BioF. The new toxin, named Fk-Bt1, was shown to be active against Sesamia nonagrioides (Lepidoptera: Noctuidae). The dose–mortality responses of the new toxin granule formulation (PFk-Bt1) and purified Cry1Ab have been compared, demonstrating the effectiveness of PFk-Bt1 and suggesting a common mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almond BD, Dean H (1994) Intracellular proteolysis and limited diversity of the Bacillus thuringiensis CryIA family of the insecticidal crystal proteins. Biochem Biophys Res Commun 201:788–794

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo V (2001) Cleaning up behind us. The potential of genetically modified bacteria to break down toxic pollutants in the environment. EMBO Rep 2:357–359

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lorenzo V, Eltis L, Kessler B, Timmis K (1993) Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123:17–24

    Article  PubMed  Google Scholar 

  • Durner R, Zinn M, Witholt B, Egli T (2001) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol Bioeng 72:278–288

    Article  CAS  PubMed  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester, p 368

    Google Scholar 

  • González-Núñez M, Ortego F, Castañera P (2000) Susceptibility of Spanish populations of the corn borers Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae) to a Bacillusthuringiensis endotoxin. J Econ Entomol 93:459–463

    Article  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vector containing non-antibiotic selection markers for cloning and stable chromosomal insertion of foreign DNA in gram-negative bacteria. J Bacteriol 172:6557–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, Wonink E, de Koning GJM, Preusting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl Microbiol Biotechnol 38:1–5

    Article  CAS  Google Scholar 

  • Johnson DE, Niezgodski DM, Twaddle GM (1980) Parasporal crystals produced by oligosporogenous mutans of Bacillus thuringiensis (Spo−Cr+). Can J Microbiol 26:486–491

    Article  CAS  PubMed  Google Scholar 

  • Kraak MN, Smits THM, Kessler B, Witholt B (1997) Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. J Bacteriol 179:4985–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Vallie ER, McCoy JM (1995) Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6:501–506

    Article  Google Scholar 

  • LeOra Software (1987) POLO-PC, user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA

  • Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 99:227–232

    Article  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezei LM, Storts DR (1994) In: Griffin HG, Griffin AM (eds) PCR technology: current innovations. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Ramos LH, McGuire MR, Galán-Wong LJ (1998) Utilization of several biopolymers for granular formulations of Bacillus thuringiensis. J Econ Entomol 91:1109–1113

    Article  Google Scholar 

  • Navon A (2000) Bacillus thuringiensis insecticides in crop protection—reality and prospects. Crop Prot 19:669–676

    Article  Google Scholar 

  • Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A (1995) Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to the polyhydroxyalkanoic acid granules. J Bacteriol 177:2513–2523

    Article  PubMed  PubMed Central  Google Scholar 

  • Pötter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560

    Article  PubMed  Google Scholar 

  • Prieto MA, Buehler B, Jung K, Witholt B, Kessler B (1999) PhaF, a polyhydroxyalkanoate granule associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J Russell DW (2001) Molecular cloning. A laboratory manual. CSHL Press, Cold Spring Harbor, Nueva York

    Google Scholar 

  • Sassenfeld HM (1990) Engineering proteins for purification. Trends Biotechnol 8:88–93

    Article  CAS  PubMed  Google Scholar 

  • Schembri MA, Woods AA, Bayly RC, Davies JK (1995) Identification of a 13-kDa protein associated with the polyhydroxyalkanoic acid granules from Acinetobacter spp. FEMS Microbiol Lett 133:277–283

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72

    Article  CAS  Google Scholar 

  • Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    PubMed  Google Scholar 

  • Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE, Wieczorek R (1995) Considerations of the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41:94–105

    Article  PubMed  Google Scholar 

  • Uhlén M, Forsberg G, Moks T, Hartmanis M, Nilsson B (1992) Fusion proteins in biotechnology. Curr Opin Biotechnol 3:363–369

    Article  PubMed  Google Scholar 

  • Wieczorek R, Steinbüchel A, Schmidt B (1996) Occurrence of polyhydroxyalkanoic acid granule-associated proteins related to the Alcaligenes eutrophus H16 GA24 protein in other bacteria. FEMS Microbiol Lett 135:23–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. García, E. Díaz, and R. López for helpful comments. We also acknowledge A. Cebolla (BioMedal) for his continuous encouragement. We are grateful to Esteban Alcalde (Syngenta Seeds S.A.) for providing the Cry1Ab toxin and to Juan Ferre (Universitat de Valencia) for the Cry1Ab antibody. C. Moldes was a recipient of a fellowship of the Fundación Ramón Areces. This work was supported by grants from Fundación Ramón Areces, EU (QLK3-CT-2002-01969), and CICYT (BIO2003-05309-C04-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Prieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldes, C., Farinós, G.P., de Eugenio, L.I. et al. New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Appl Microbiol Biotechnol 72, 88–93 (2006). https://doi.org/10.1007/s00253-005-0257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0257-6

Keywords

Navigation