Skip to main content

The Role of Mixed Forests in a Changing Social-Ecological World

  • Chapter
  • First Online:
Dynamics, Silviculture and Management of Mixed Forests

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 31))

Abstract

There is a growing attention to mixed forests in the world. Their capacity to cope with mitigation and adaptation to climate change by increasing resilience and lowering risks is pinpointed as an opportunity to highlight the role of tree species-rich forests as part of complex socio-ecological systems. However, analyses of the performance of mixed forests are hampered so far by the lack of a reference definition of mixed forest and the multiple species- and site-specific cases that lead to incomplete knowledge in the delivery of ecosystem services as compared with pure stands. Here, a proposal of definition of mixed forests is discussed along with the performance of mixed forests in the context of the delivery of selected ecosystem services. It is stressed that the analysis of the interaction between structure and functioning and the constraints imposed by changing bio-geophysical conditions is a key issue to fulfill the increasing demand of ecosystem services and the challenge of policy decisions that might affect forest systems (e.g., the transition to bio-economy). Opportunities for forest managers and researchers are highlighted accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alila Y, Kuras PK, Schnorbus M, Hudson R (2009) Forests and floods: a new paradigm sheds light on age-old controversies. Water Resour Res 45:1–24. https://doi.org/10.1029/2008WR007207

    Article  Google Scholar 

  • Almagro M, Maestre FT, Martínez-López J et al (2015) Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biol Biochem 90:214–223. https://doi.org/10.1016/j.soilbio.2015.08.006

    Article  CAS  Google Scholar 

  • Almagro M, Martínez-López J, Maestre FT, Rey A (2016) The contribution of photodegradation to litter decomposition in semiarid Mediterranean grasslands depends on its interaction with local humidity conditions. Litter Qual Position Ecosyst. https://doi.org/10.1007/s10021-016-0036-5

    Article  Google Scholar 

  • Aponte C, García LV, Marañón T (2012) Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems 15:1204–1218. https://doi.org/10.1007/s10021-012-9577-4

    Article  CAS  Google Scholar 

  • Assmann E (1971) The principles of forest yield study, vol 506. Pergamon press, Oxford/New York

    Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558. https://doi.org/10.1038/nature05038

    Article  CAS  PubMed  Google Scholar 

  • Ayres E, Steltzer H, Simmons BL et al (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. https://doi.org/10.1016/j.soilbio.2008.12.022

    Article  CAS  Google Scholar 

  • Balvanera P, Siddique I, Dee L et al (2014) Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64:49–57. https://doi.org/10.1093/biosci/bit003

    Article  Google Scholar 

  • Bauhus J, Puettmann KJ, Kühne C (2013) Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Earthscan Ltd, New York, pp 187–213

    Google Scholar 

  • Berger TW, Inselsbacher E, Zechmeister-Boltenstern S (2010) Carbon dioxide emissions of soils under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures. Soil Biol Biochem 42:986–997. https://doi.org/10.1016/j.soilbio.2010.02.020

    Article  CAS  Google Scholar 

  • Berkes F, Folke C, Colding J (1998) Linking social and ecological systems. Management practices and social mechanisms for building resilience. Cambridge University Press, Cambridge

    Google Scholar 

  • Bielak K, Dudzinska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term. For Syst 23:573–589

    Google Scholar 

  • Brang P, Spathelf P, Larsen JB et al (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503

    Article  Google Scholar 

  • Bravo F (2014) 301 Años de búsqueda de la sostenibilidad forestal: del rendimiento sostenido a la gestión adaptativa. Lección Inaugural del curso 2014–2015 – 301 years of forest sustainability quest: from sustained yield to adpative management. Palencia

    Google Scholar 

  • Bravo-Oviedo A, Pretzsch H, Ammer C et al (2014) European mixed forests: definition and research perspectives. For Syst 23:518–533. https://doi.org/10.5424/fs/2014233-06256

    Article  Google Scholar 

  • Bravo-Oviedo A, Ruiz-Peinado R, Onrubia R, del Río M (2017) Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For Ecol Manag 391:309–320. https://doi.org/10.1016/j.foreco.2017.02.032

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA et al (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951. https://doi.org/10.1007/s10531-008-9380-x

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 489:326–326. https://doi.org/10.1038/nature11373

    Article  CAS  Google Scholar 

  • Carnol M, Baeten L, Branquart E et al (2014) Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry 87:639–653. https://doi.org/10.1093/forestry/cpu024

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH, Paré D (2010) Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can J For Res 40:37–47. https://doi.org/10.1139/X09-171

    Article  CAS  Google Scholar 

  • Chen HYH, Klinka K (2003) Aboveground productivity of western hemlock and western redcedar mixed-species stands in southern coastal British Columbia. For Ecol Manag 184:55–64. https://doi.org/10.1016/S0378-1127(03)00148-8

    Article  Google Scholar 

  • Chen HYH, Klinka K, Mathey AH et al (2003) Are mixed-species stands more productive than single-species stands: an empirical test of three forest types in British Columbia and Alberta. Can J For Res Can Rech For 33:1227–1237. https://doi.org/10.1139/x03-048

    Article  Google Scholar 

  • Chomel M, Guittonny-Larchevêque M, DesRochers A, Baldy V (2015) Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Ecosystems 18:1014–1028. https://doi.org/10.1007/s10021-015-9880-y

    Article  Google Scholar 

  • Ciancio O, Nocentini S (2011) Biodiversity conservation and systemic silviculture: concepts and applications. Plant Biosyst 145:411–418

    Article  Google Scholar 

  • Condés S, Del M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. For Ecol Manag 292:86–95

    Article  Google Scholar 

  • Cremer M, Kern V, Prietzel J (2016) Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. For Ecol Manag 367:30–40. https://doi.org/10.1016/J.FORECO.2016.02.020

    Article  Google Scholar 

  • Davis LS, Johnson KN, Bettinger P, Howard TE (2001) Forest management. To sustain ecological, economic, and social values, 4th edn. Waveland Press, Long Grove

    Google Scholar 

  • del Río M, Pretzsch H, Ruíz-Peinado R et al (2016) Species interactions increase the temporal stability of community productivity in Pinus sylvestris-Fagus sylvatica mixtures across Europe. J Ecol. https://doi.org/10.1111/1365-2745.12727

    Article  Google Scholar 

  • del Rio M, Pretzsch H, Alberdi I et al (2018) Characterization oíf mixed forests. In: Bravo-Oviedo A, del Río M, Pretzsch H (eds) Dynamics, silviculture and management of mixed forests. Springer, Cham, pp 27–71

    Google Scholar 

  • Diaz S, Tilman D, Fargione J et al (2005) Biodiversity regulation of ecosystem services. In: Ecosystems and human well-being: current state and trends, vol I. Island Press, Washington, DC, pp 299–329

    Google Scholar 

  • Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23:534–546

    Google Scholar 

  • Duncan RP (1993) Flood disturbance and the coexistence of species in a lowland Podocarp Forest, South Westland, New Zealand. J Ecol 81:403–416

    Article  Google Scholar 

  • Duncker PS, Barreiro SM, Hengeveld GM et al (2012) Classification of forest management approaches: a new conceptual framework and its applicability to European forestry. Ecol Soc 17:51. https://doi.org/10.5751/ES-05262-170451

    Article  Google Scholar 

  • EEA-European Environment Agency (2015) Water-retention potential of Europe’s forests

    Google Scholar 

  • EEA (2016) European forest ecosystems – state and trends

    Google Scholar 

  • Ellison D, Morris CE, Locatelli B et al (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

    Article  Google Scholar 

  • European Commission (2013) A new EU Forest Strategy: for forests and the forest-based sector COM(2013) 659. European Comission, Brussels

    Google Scholar 

  • European Environment Agency (2015) Exploring nature-based solutions: the role of green infrastructure in mitigating the impacts of weather- and climate change-related natural hazards

    Google Scholar 

  • FAO (2015) Global forest resource assessment 2015. How the world’s forests are changing? FAO, Rome

    Google Scholar 

  • FAO (2016) State of the world’s forests 2016. Forests and agriculture: land-use challenges and opportunities. FAO, Rome

    Google Scholar 

  • Filotas E, Parrott L, Burton PJ et al (2014) Viewing forests through the lens of complex systems science. Ecosphere 5:1–23. https://doi.org/10.1890/ES13-00182.1

    Article  Google Scholar 

  • Forest Europe (2011) State of Europe’s forests 2011. Status & trends in sustainable forest management in Europe. MCPFE. Forest Europe Liasion Unit Oslo

    Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292. https://doi.org/10.1016/j.foreco.2013.10.003

    Article  Google Scholar 

  • Forrester DI, Pretzsch H (2015) On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag. https://doi.org/10.1016/j.foreco.2015.08.016

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Khanna PK (2004) Growth dynamics in a mixed-species Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 193:81–95. https://doi.org/10.1016/j.foreco.2004.01.024

    Article  Google Scholar 

  • Fürstenau C, Badeck FW, Lasch P et al (2007) Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur J For Res 126:225–239. https://doi.org/10.1007/s10342-006-0114-x

    Article  Google Scholar 

  • Gahagan A, Giardina CP, King JS et al (2015) Carbon fluxes, storage and harvest removals through 60years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. For Ecol Manag 337:88–97. https://doi.org/10.1016/j.foreco.2014.10.037

    Article  Google Scholar 

  • Gamborg G, Larsen JB (2003) “Back to nature” – a sustainable future for forestry? For Ecol Manag 179:559–571

    Article  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340. https://doi.org/10.1038/ncomms2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessler A, Keitel C, Kreuzwieser J et al (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees – Struct Funct 21:1–11. https://doi.org/10.1007/s00468-006-0107-x

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Grossiord C, Granier A, Ratcliffe S et al (2014) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci 111:14812. https://doi.org/10.1073/pnas.1411970111

    Article  CAS  PubMed  Google Scholar 

  • Hall R, Smolkers R, Ernsting A, et al (2012) Bio-economy versus biodiversity

    Google Scholar 

  • Hassan R, Scholes R, Ash N (2005) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, DC

    Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190

    Article  CAS  Google Scholar 

  • Heym M, Ruíz-Peinado R, Del Río M et al (2017) EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) through Europe. Ann For Sci 74:63. https://doi.org/10.1007/s13595-017-0660-z

    Article  Google Scholar 

  • Hu YL, Wang SL, Zeng DH (2006) Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant Soil 282:379–386. https://doi.org/10.1007/s11104-006-0004-5

    Article  CAS  Google Scholar 

  • Ilstedt U, Tobella AB, Bazié HR et al (2016) Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Nat Publ Gr:1–12. https://doi.org/10.1038/srep21930

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Summary for Policymakers, p 26

    Google Scholar 

  • Jactel H, Nicoll BC, Branco M et al (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:701. https://doi.org/10.1051/forest/2009054

    Article  Google Scholar 

  • Jactel H, Bauhus J, Bonal D et al (2017) Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep. https://doi.org/10.1007/s40725-017-0064-1

    Article  Google Scholar 

  • Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111:641–648. https://doi.org/10.1111/j.1600-0706.2005.13851.x

    Article  Google Scholar 

  • Jensen FS, Skovsgaard JP (2009) Precommercial thinning of pedunculate oak: recreational preferences of the population of Denmark for different thinning practices in young stands. Scand J For Res 24:28–36

    Article  Google Scholar 

  • Jonard M, Andre F, Ponette Q (2008) Tree species mediated effects on leaf litter dynamics in pure and mixed stands of oak and beech. Can J For Res Can Rech For 38:528–538. https://doi.org/10.1139/x07-183

    Article  Google Scholar 

  • Kanninen M (2010) Plantation forests: global perspectives. In: Bauhus J, van der Meer P, Kanninen M (eds) Ecosystem goods and services from plantation forests. Earthscan from Routledge/Taylor & Francies Group, London/Washington, D.C, pp 1–15

    Google Scholar 

  • Kelty M (1992) Comparative productivity of monocultures and mixed-stands. In: The ecology and silviculture of mixed-species forests. Springer, Dordrecht, pp 125–142

    Chapter  Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233:195–204. https://doi.org/10.1016/j.foreco.2006.05.011

    Article  Google Scholar 

  • Kelty MJ, Cameron IR (1995) Plot designs for the analysis of species interactions in mixed stands. Commonw For Rev 74:322–332

    Google Scholar 

  • Kimmins JP (2004) Forest ecology. A foundation for sustainable forest management and environmental ethics in forestry, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kohm KA, Franklin JF (eds) (1997) Creating a forestry for the 21st century. The science of ecosystem management. Island Press, Washington, DC

    Google Scholar 

  • Kunert N, Schwendenmann L, Potvin C, Hölscher D (2012) Tree diversity enhances tree transpiration in a Panamanian forest plantation. J Appl Ecol 49:135–144. https://doi.org/10.1111/j.1365-2664.2011.02065.x

    Article  Google Scholar 

  • Larocque GR, Luckai N, Adhikary SN et al (2013) Competition theory-science and application in mixed forest stands: review of experimental and modelling methods and suggestions for future research. Environ Rev 21:71–84

    Article  Google Scholar 

  • Lasch P, Badeck FW, Suckow F et al (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manag 207:59–74. https://doi.org/10.1016/j.foreco.2004.10.034

    Article  Google Scholar 

  • Leikola M (1999) Definition and classification of mixed forests, with a special emphasis on boreal forests. In: Olsthoorn AFM, Bartelink H, Gardiner JJ et al (eds) Management of mixed-species forest: silviculture and economics. DLO Institute of Forestry and Nature Research, Wageningen, pp 20–28

    Google Scholar 

  • Levin S (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436

    Article  Google Scholar 

  • Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity–productivity relationship predominant in global forests. Science 354:196. https://doi.org/10.1126/science.aaf8957

    Article  CAS  Google Scholar 

  • Lindenmayer D, Messier C, Paquette A, Hobbs RJ (2015) Managing tree plantations as novel socio-ecological systems: Australian and North American perspectives. Can J For Res 1433:150615144134009. https://doi.org/10.1139/cjfr-2015-0072

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72

    Article  CAS  Google Scholar 

  • Maes J, Liquete C, Teller A et al (2016) An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst Serv 17:14–23. https://doi.org/10.1016/j.ecoser.2015.10.023

    Article  Google Scholar 

  • Maestre FT, Eldridge DJ, Soliveres S et al (2016) Structure and functioning of dryland ecosystems in a changing world. Annu Rev Ecol Evol Syst 47:215–237. https://doi.org/10.1146/annurev-ecolsys-121415-032311

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchetti M, Vizzarri M, Lasserre B et al (2014) Natural capital and bioeconomy: challenges and opportunities for forestry. Ann Silvic Res 38:62–73

    Google Scholar 

  • Mason B, Kerr G, Pommerening A, et al (2003) Continous cover forestry in British conifer forests. Forest Research Annual Report and Accounts 2003–2004

    Google Scholar 

  • Mason WL, Löf M, Pach M, Spathelf P (2018) The development of Silvicultural guidelines for creating mixed forests. In: Bravo-Oviedo A, Pretzsch H, del Río M (eds) Dynamics, silviculture and management of mixed forests. Springer, Berlin/Heidelberg, pp 255–270

    Google Scholar 

  • Matos ES, Freese D, Ślązak A et al (2010) Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany. J Plant Nutr Soil Sci 173:654–661. https://doi.org/10.1002/jpln.200900046

    Article  CAS  Google Scholar 

  • Messier C, Tittler R, Kneeshaw DD et al (2009) TRIAD zoning in Quebec: experiences and results after 5 years. For Chron 85:885–896. https://doi.org/10.5558/tfc85885-6

    Article  Google Scholar 

  • Messier C, Puettmann KJ, Coates KD (eds) (2013) Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Earthscan from Routledge – Taylor & Francies Group, London

    Google Scholar 

  • Messier C, Puettmann K, Chazdon R et al (2015) From management to stewardship: viewing forests as complex adaptive systems in an uncertain world. Conserv Lett 8:368–377. https://doi.org/10.1111/conl.12156

    Article  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forest of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151. https://doi.org/10.1890/06-1715.1

    Article  PubMed  Google Scholar 

  • Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol 54:12–27. https://doi.org/10.1111/1365-2664.12669

    Article  Google Scholar 

  • Natkhin M, Steidl J, Dietrich O et al (2012) Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany. J Hydrol 448–449:245–254. https://doi.org/10.1016/j.jhydrol.2012.05.005

    Article  Google Scholar 

  • Nielsen AB, Olsen SB, Lundhede T (2007) An economic valuation of the recreational benefits associated with nature-based forest management practices. Landsc Urban Plan 80:63–71. https://doi.org/10.1016/j.landurbplan.2006.06.003

    Article  Google Scholar 

  • Nocentini S (2011) The forest as a complex biological system: theoretical and practical consequences. L’Italia For e Mont 66:191–196. https://doi.org/10.4129/ifm.2011.3.02

    Article  Google Scholar 

  • Nocentini S, Buttoud G, Ciancio O, Corona P (2017) Managing forests in a changing world: the need for a systemic approach. A review. For Syst 26:1–15

    Google Scholar 

  • Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proc Natl Acad Sci 104:15181–15187

    Article  CAS  Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science (80- ) 325:419–422

    Article  CAS  Google Scholar 

  • Pach M, Sansone D, Ponette Q et al (2018) Silviculture of mixed forests. A European overview of current practices and challenges. In: Bravo-Oviedo A, Pretzsch H, del Río H (eds) Dynamics, silviculture and management of mixed forests. Springer, Berlin/Heidelberg, pp 185–253

    Google Scholar 

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34. https://doi.org/10.1890/080116

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Paquette A, Messier C (2013) Managing tree plantations as complex adaptive systems. In: Managing forest as complex adaptive systems. Earthscan from Routledge, Abingdon, pp 299–326

    Google Scholar 

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manag 220:66–74. https://doi.org/10.1016/j.foreco.2005.08.005

    Article  Google Scholar 

  • Pretzsch H (2007) Analysing and modelling forest stand dynamics for practical application. An European review and perspective. Eurasian J For Res 10:1–17

    Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264

    Article  Google Scholar 

  • Pretzsch H (2018) Growth and structure in mixed-species stands compared with monocultures. Review and perspectives. In: Bravo-Oviedo A, del Rio M, Pretzsch H (eds) Dynamics, Silviculture and management of mixed forests. Springer-Verlag, GmbH Germany, Berlin, pp 131–183

    Google Scholar 

  • Pretzsch H, Bielak K, Block J et al (2013a) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280. https://doi.org/10.1007/s10342-012-0673-y

    Article  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2013b) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495

    Article  CAS  Google Scholar 

  • Pretzsch H, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927. https://doi.org/10.1007/s10342-015-0900-4

    Article  Google Scholar 

  • Pretzsch H, del Río M, Schütze G et al (2016) Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manag 373:149–166. https://doi.org/10.1016/j.foreco.2016.04.043

    Article  Google Scholar 

  • Puettmann KJ, Coates KD, Messier C (2008) A critique of silviculture: managing for complexity. Island Press, Washington, DC

    Google Scholar 

  • Puettmann KJ, Wilson SM, Baker SC et al (2015) Silvicultural alternatives to conventional even-aged forest management – what limits global adoption? For Ecosyst 2:2–8. https://doi.org/10.1186/s40663-015-0031-x

    Article  Google Scholar 

  • Pukkala T, von Gadow K (eds) (2012) Continuous cover forestry. Springer, Dordrecht

    Google Scholar 

  • Pulla P, Schuck A, Verkerk PJ et al (2013) Mapping the distribution of forest ownership in Europe. Europe Forest Institute, Joensuu

    Google Scholar 

  • Redman CL, Grove JM, Kuby LH (2004) Integrating social science into the Long-Term Ecological Research (LTER) network: social dimensions of ecological change and ecological dimensions of social change. Ecosystems 7:161–171. https://doi.org/10.1007/s10021-003-0215-z

    Article  Google Scholar 

  • Rio M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:502

    Article  Google Scholar 

  • Riofrío J, del Río M, Bravo F (2017) Mixing effects on growth efficiency in mixed pine forests. Forestry 90:381–392

    Google Scholar 

  • Rist L, Felton A, Mårald E et al (2016) Avoiding the pitfalls of adaptive management implementation in Swedish silviculture. Ambio 45:140–151. https://doi.org/10.1007/s13280-015-0750-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Peinado R, Heym M, Drössler L et al (2018) Data platforms for mixed forests research: contributions from the EuMIXFOR network. In: Bravo-Oviedo A, del Rio M, Pretzsch H (eds) Dynamics, silviculture and management of mixed forests. Springer-Verlag GmbH, Germany, pp 73–101

    Google Scholar 

  • Sanborn PT, Brockley RP (2009) Decomposition of pure and mixed foliage litter in a young lodgepole pine – Sitka alder stand in the central interior of British Columbia. Can J For Res 39:2257–2262. https://doi.org/10.1139/X09-122

    Article  CAS  Google Scholar 

  • Santonja M, Fernandez C, Gauquelin T, Baldy V (2015) Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69–82. https://doi.org/10.1007/s11104-015-2471-z

    Article  CAS  Google Scholar 

  • Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006

    Article  Google Scholar 

  • Scherer-Lorenzen M (2014) The functional role of biodiversity in the context of global change. In: Coomes DA, DFRP B, Simonson WD (eds) Forests and global change. Cambridge University Press, Cambridge. (C) British Ecological Society, pp 195–237

    Chapter  Google Scholar 

  • Schwendenmann L, Pendall E, Sanchez-Bragado R et al (2015) Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology 8:1–12. https://doi.org/10.1002/eco.1479

    Article  Google Scholar 

  • Sheffer E, Canham C, Kigel J, Perevolotsky A (2015) Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems. Oecologia 177:1039–1051. https://doi.org/10.1007/s00442-015-3228-3

    Article  PubMed  Google Scholar 

  • Soares AAV, Leite HG, Souza AL et al (2016) Increasing stand structural heterogeneity reduces productivity in Brazilian Eucalyptus monoclonal stands. For Ecol Manag 373:26–32. https://doi.org/10.1016/j.foreco.2016.04.035

    Article  Google Scholar 

  • Spies T (1997) Forest stand structure, composition, and function. In: Creating a forestry for the 21st century. Island Press, Washington, DC, pp 11–30

    Google Scholar 

  • Sprenger M, Oelmann Y, Weihermüller L et al (2013) Tree species and diversity effects on soil water seepage in a tropical plantation. For Ecol Manag 309:76–86. https://doi.org/10.1016/j.foreco.2013.03.022

    Article  Google Scholar 

  • Tesfaye MA, Bravo F, Ruiz-Peinado R et al (2016) Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70–79. https://doi.org/10.1016/j.geoderma.2015.06.022

    Article  CAS  Google Scholar 

  • Thibodeau L, Raymond P, Camiré C, Munson AD (2000) Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition, and foliar nutrition. Can J For Res 30:229–238. https://doi.org/10.1139/x99-202

    Article  CAS  Google Scholar 

  • Thompson ID, Okabe K, Parrotta JA et al (2014) Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodivers Conserv 23:2613–2635. https://doi.org/10.1007/s10531-014-0736-0

    Article  Google Scholar 

  • Thurm EA, Pretzsch H (2016) Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Ann For Sci 73:1. https://doi.org/10.1007/s13595-016-0588-8

    Article  Google Scholar 

  • Toïgo M, Vallet P, Perot T et al (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103:502. https://doi.org/10.1111/1365-2745.12353

    Article  Google Scholar 

  • Toumey JW, Korstian CF (1947) Foundations of silviculture upon an ecological basis. Wiley, New York, p 468

    Google Scholar 

  • Urgoiti J, Paquette A (2018) Mixed forests plantations. In: Bravo-Oviedo A, Pretzsch H, del Río M (eds) Dynamics, Silviculture and management of mixed forests. Springer, Berlin/Heidelberg, pp 319–341

    Google Scholar 

  • van der Plas F, Manning P, Allan E et al (2016) Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109. https://doi.org/10.1038/ncomms11109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheyen K, Vanhellemont M, Auge H et al (2016) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41. https://doi.org/10.1007/s13280-015-0685-1

    Article  CAS  PubMed  Google Scholar 

  • Vilà N, Inchausti P, Vayreda J et al (2005) Confounding factors in the observational productivity-diversity relationship in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems. Springer, Berlin, pp 65–86

    Chapter  Google Scholar 

  • Vilà M, Carrillo-Gavilán A, Vayreda J et al (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS One 8:e53530

    Article  Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social – ecological systems. Ecol Soc 9:5. https://doi.org/10.1103/PhysRevLett.95.258101

    Article  CAS  Google Scholar 

  • Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Conserv 139:235–246. https://doi.org/10.1016/j.biocon.2007.07.015

    Article  Google Scholar 

  • Wang Q, Wang S, Huang Y (2009) Leaf litter decomposition in the pure and mixed plantations of Cunninghamia lanceolata and Michelia macclurei in subtropical China. Biol Fertil Soils 45:371–377. https://doi.org/10.1007/s00374-008-0338-7

    Article  CAS  Google Scholar 

  • Woodall CW, Amato AWD, Bradford JB, Finley AO (2011) Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States. For Sci 57:365–378

    Google Scholar 

  • Wright AJ, de Kroon H, Visser EJW et al (2017) Plants are less negatively affected by flooding when growing in species-rich plant communities. New Phytol 213:645–656. https://doi.org/10.1111/nph.14185

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468. https://doi.org/10.1073/pnas.96.4.1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffee SL (1999) Three faces of ecosystem management. Conserv Biol 13:713–725

    Article  Google Scholar 

  • Zeller L, Liang J, Pretzsch H (2018) Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. For Ecosyst 5:4. https://doi.org/10.1186/s40663-017-0127-6

    Article  Google Scholar 

Download references

Acknowledgments

Hans Pretzsch and Miren del Río provided valuable comments on a first draft. Ideas for this chapter arose from meetings and events of FP1206 COST Action funded by COST Association. The author wants to thank Ricardo Ruiz-Peinado, colleague and friend, for his support as Grant Holder Manager. The whole EuMIXFOR community deserves the best of compliments for their commitment to the advancement of knowledge on more diverse forests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Bravo-Oviedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bravo-Oviedo, A. (2018). The Role of Mixed Forests in a Changing Social-Ecological World. In: Bravo-Oviedo, A., Pretzsch, H., del Río, M. (eds) Dynamics, Silviculture and Management of Mixed Forests. Managing Forest Ecosystems, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-91953-9_1

Download citation

Publish with us

Policies and ethics