Skip to main content

Advertisement

Log in

Multiple-use forest management in consideration of climate change and the interests of stakeholder groups

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2007

Abstract

In this study, the overall utility of forest management alternatives at the forest management unit level is evaluated with regard to multi-purpose and multi-user settings by a multi-criteria analysis (MCA) method. The MCA is based on an additive utility model. The relative importance of partial objectives of forest management (carbon sequestration, ground water recharge, biodiversity, and timber production) is defined in cooperation with stakeholders. The forest growth model 4C (Forest Ecosystems in a Changing Environment) is used to simulate the impact of six forest management strategies and climate on forest functions. Two climate change scenarios represent uncertainties with regard to future climatic conditions. The study is based on actual forest conditions in the Kleinsee management unit in east Germany, which is dominated by Scots pine (Pinus sylvestris L.) and oak (Quercus robur L. and Quercus petraea Liebl.) stands. First, there is an analysis of the impact of climate and forest management on forest functions. Climate change increases carbon sequestration and income from timber production due to increased stand productivity. Secondly, the overall utility of the management strategies is compared under the priority settings of different stakeholder groups. From an ecological perspective, a conservation strategy would be preferable under all climate scenarios, but the business as usual management would also fit the expectations under the current climate due to high biodiversity and carbon sequestration in the forest ecosystem. In contrast, a forest manager in public-owned forests or a private forest owner would prefer a management strategy with an intermediate thinning intensity and a high share of pine stands to enhance income from timber production while maintaining the other forest functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammer U, Schubert H (1999) Conservation of species, processes and resources against the background of faunistic investigations of the forest canopy. Forstw Cbl 2:70–87

    Article  Google Scholar 

  • Badeck FW, Fürstenau C, Lasch P, Suckow F, Peltola H, Garcia-Gonzalo J, Briceño-Elizondo E, Kellomäki S, Lexer MJ, Jäger D, Lindner M, Thiel D, Kaipainen T, Lehikoinen N, Junge S, Feliu J (2005) Adaptive forest management at the scale of management units. In: Kellomäki S, Leinonen S (eds) Management of European forests under changing climatic conditions. Research Notes 163. University of Joensuu, Faculty of Forestry, pp. 315–382

  • BMVEL, Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (2003) Holzmarktbericht 2002. BMVEL, Bonn

  • BMVEL, Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (2004) Holzmarktbericht 1/2003. BMVEL, Bonn

  • Bolte A (1996) Die Bodenvegetation in Kiefernökosystemen—eine Steuergröße für den Wasser- und Stoffhaushalt. In: Anonymous (eds) Hamburger Forst- und Holztagung 1996 in Eberswalde, Buchhandlung Max Wiedebusch, Hamburg, pp. 97–111

  • Briceño-Elizondo E, Lexer JM (2004) Estimating carbon sequestration in the wood products pool: model adaptation and application for Austrian conditions. Cent.bl gesamte Forstwes 2:99–119

    Google Scholar 

  • Brown S, Sathaye J, Cannell M (1996) Management of forests for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowera MC, Moss RH (eds) Climate change 1995. Impacts, adaptation and mitigation of climate change: scientific-technical analyses. Contribution of WG II to the second assessment report of the IPCC. Cambridge University Press, Cambridge, pp. 773–797

    Google Scholar 

  • Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabaté S (eds) Impacts of global change on tree physiology and forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp. 255–261

    Chapter  Google Scholar 

  • Burger H (1948) Holz, Blattmenge und Zuwachs. Die Föhre. Mitt. Schweiz. Anst forstl Versuchswes 25:435–493

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Eggers T (2002) The impacts of manufacturing and utilisation of wood products on the European carbon budget. Internal Report 9. European Forest Institute, Joensuu

  • Gerstengarbe FW, Badeck F, Hattermann F, Krysanova V, Lahmer W, Lasch P, Stock M, Suckow F, Wechsung F, Werner PC (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven. PIK-Report 83. PIK, Potsdam

  • Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561

    Article  Google Scholar 

  • Hesmer H (1933) Die natürliche Bestockung und die Waldentwicklung auf verschiedenartigen märkischen Standorten—Oberförsterei Tauer. Z Forst Jagdwesen 65:595–597

    Google Scholar 

  • Hilt M, Ammer U (1994) Beetles inhabiting dead woody material in the commercial forest spruce and oak compared. Forstw Cbl 113:245–255

    Article  Google Scholar 

  • IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden J, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the international panel on climate change. Cambridge University Press, Cambridge

  • Kamenetzky RD (1982) The relationship between the analytical hierarchy process and the additive value function. Decis Sci 13:702–716

    Article  Google Scholar 

  • Kangas J, Pukkala T (1996) Operationalization of biological diversity as a decision objective in tactical forest planning. Can J For Res 26:103–111

    Article  Google Scholar 

  • Kangas J, Kangas A (2002) Multiple criteria decision support methods in forest management—an overview and comparative analyses. In: Pukkala T (ed) Multi-objective forest planning. Kluwer Academic Publisher, Dordrecht, pp. 37–70

    Chapter  Google Scholar 

  • Kangas J, Kangas A (2005) Multiple criteria decision support in forest management—the approach, methods applied, and experiences gained. For Ecol Manage 207:133–143

    Article  Google Scholar 

  • Kellomäki S, Leinonen S (2005) Management of European forests under changing climatic conditions. Research Notes 163. University of Joensuu, Faculty of Forestry

  • Kellomäki S, Karjalainen T, Mohren F, Lapveteläinen T (2000) Expert assessment on the likely impacts of climate change on forests and forestry in Europe. EFI proceedings 34, EFI, Joensuu

  • Kramer H (1988) Waldwachstumslehre. Parey, Hamburg und Berlin

    Google Scholar 

  • Kramer K, Mohren GMJ (2001) Long-term effects of climate change on carbon budgets of forests in Europe. Report 194. Alterra, Green World Research, Wageningen

  • Krausch HD (1957) Die Heiden des Amtes Peitz. Ein Beitrag zur Vegetationsgeschichte der Niederlausitz. Abh Ber Natur mus Görlitz 35:153–181

    Google Scholar 

  • Lahmer W, Dannowski R, Pfützner B (2000) Flächendeckende Modellierung von Wasserhaushaltsgrößen für das Land Brandenburg. Studien und Tagungsbericht 27, Landesumweltamt Brandenburg, Potsdam

  • Lasch P, Badeck FW, Lindner M, Suckow F (2002) Sensitivity of simulated forest growth to changes in climate and atmospheric CO2. Forstw Cbl 121(Suppl. 1):155–171

    Google Scholar 

  • Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg. For Ecol Manage 207:59–75

    Article  Google Scholar 

  • Lexer MJ (2000) Ein multi-attributives Nutzenmodell zur Unterstützung der waldbaulichen Entscheidungsfindung dargestellt am Beispiel sekundärer Nadelwälder. Forstw Cbl 119:377–394

    Article  Google Scholar 

  • Lexer MJ, Brooks RT (2005) Decision support for multiple purpose forestry. For Ecol Manage 207:1–3

    Article  Google Scholar 

  • LFA, Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (1993) Der Wald in Baden-Württemberg im Siegel der Bundeswaldinventur 1986–1990—Ergebnisse der Ersterhebung. LFA, Freiburg

  • Lindhe A, Asenblad N, Toresson HG (2004) Cut logs and high stumps of spruce, birch, aspen and oak—nine years of saproxylic fungi succession. Biol Conserv 119:443–454

    Article  Google Scholar 

  • Lindner M (1999) Forest management strategies in the context of potential climate change. Forstw Cbl 118:1–13

    Article  Google Scholar 

  • Lindner M, Lasch P, Badeck F, Beguiristain PP, Junge S, Kellomäki S, Peltola H, Gracia C, Sabate S, Jäger D, Lexer M, Freeman M (2005) Chapter 4: SilviStrat model evaluation exercises. In: Kellomäki S, Leinonen S (eds) Management of European forests under changing climatic conditions. Research Notes 163. University of Joensuu, Faculty of Forestry, pp 73–107

  • Majunke C, Schulz U, Dreger F (2004) Aktivierung von Selbstregulationskräften in Wäldern gegenüber biotischen Schadeinflüssen durch Waldumbau. Tagungsbericht des Brandenburgischen Forstvereins Klimawandel—Wie soll der Wald der Zukunft aussehen? Eberswalde, pp 37–44

  • Marland G, Schlamadinger B (1997) Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass Bioenerg 13:389–397

    Article  CAS  Google Scholar 

  • Maser C, Anderson RG, Cromack K Jr, Williams JT, Martin RE (1979) Dead and down woody material. In: Thomas JW (ed) Wildlife habitats in managed forests. USDA Forest Service, Agriculture Handbook No. 553, pp. 78–95

  • Medlyn BE, Jarvis PG (1999) Design and use of a database of model parameters from elevated [CO2] experiments. Ecol Model 124:69–83

    Article  CAS  Google Scholar 

  • MELF, Ministerium für Ernährung, Landwirtschaft und Forsten des Landes Brandenburg (1993) Landeswald programm. MELF, Potsdam

  • MELF, Ministerium für Ernährung, Landwirtschaft und Forsten des Landes Brandenburg (1995) Rohholzaushaltung, Rohholzverkauf Forstverwaltung Brandenburg. UB Media Verlag GmbH, St Wolfgang

  • MELF, Ministerium für Ernährung, Landwirtschaft und Forsten des Landes Brandenburg (1998) Waldbaurahmenrichtlinien für den Landeswald. MELF, Potsdam

  • Mendoza GA, Prabhu R (2000) Development of a methodology for selecting criteria and indicators of sustainable forest management: a case study on participatory assessment. Environ Manage 26:659–673

    Article  CAS  PubMed  Google Scholar 

  • Müller J (1996) Beziehungen zwischen Vegetationsstrukturen und Wasserhaushalt in Kiefern- und Buchenökosystemen. In: Anonymous (eds) Hamburger Forst- und Holztagung 1996 in Eberswalde, Vol. 9. Buchhandlung Max Wiedebusch, Hamburg, pp. 112–128

  • Munda G (2004) Social multi-criteria evaluation: methodological foundations and operational consequences. Eur J Oper Res 158:662–677

    Article  Google Scholar 

  • Puttaswamaiah K (2002) Cost–benefit analysis: environmental and ecological perspectives. Transaction Publishers, New Brunswick

    Google Scholar 

  • RSU, Rat von Sachverständigen für Umweltfragen (2000) Umweltgutachten 2000. Schritte ins nächste Jahrtausend. Chapter: Dauerhaft umweltgerechte Wald- und Forstwirtschaft, Stuttgart, pp. 444–491

  • Saaty TL (1977) Scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Saaty TL (2001) Decision making with dependence and feedback: the analytic network process. RWS Publisher, Pittsburgh

    Google Scholar 

  • Schaber J, Badeck F, Lasch P (1999) Ein Modell der Sukzessionsdynamik europäischer Wälder—Forest ecosystems in a changing environment (4C). In: Pelz DR, Rau O, Saborowski J (eds) Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik und Internationale, Vol. 11. Tagung und Internationale Biometrische Gesellschaft—Deutsche Region, AG Ökologie, Herbstkolloquium Freiburg/Brsg. Biotechnische Fakultät, Abteilung für die Forstwirtschaft, Ljubljana, pp. 212–217

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, De La Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  Google Scholar 

  • Schuck A, Meyer P, Menke N, Lier M, Lindner M (2004) Forest biodiversity indicator: dead wood—a proposed approach towards operationalising the MCPFE indicator. In: Marchetti M (ed) Monitoring and indicators of forest biodiversity in Europe—from ideas to operationality. EFI proceedings 51. European Forest Institute, Joensuu, pp. 49–77

  • Schulze S (2000) Komplexe standortskundliche Untersuchungen an Trauben-Eiche (Quercus petraea) im Revier Kleinsee unter Berücksichtigung der Naturverjüngung. Fachhochschule Eberswalde

  • Suckow F, Lasch P, Badeck FW (2002) Auswirkungen von Klimaveränderungen auf die Grundwasserneubildung. In: MLUR (eds) Funktionen des Waldes und Aufgaben der Forstwirtschaft in Verbindung mit dem Landschaftswasserhaushalt. LFE, Eberswalde, pp. 36–44

  • Vacik H, Lexer MJ (2001) Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. For Ecol Manage 143:65–76

    Article  Google Scholar 

  • Wechsung F, Becker A, Gräfe P (2004) Integrierte Analyse der Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet. PIK, Potsdam

    Google Scholar 

  • Werner F, Taverna R, Hofer P, Richter K (2005) Carbon pool and substitution effects on an increased use of wood in buildings in Switzerland: first estimate. Ann For Sci 62:889–902

    Article  CAS  Google Scholar 

  • Wolfslehner B, Vacik H, Lexer MJ (2005) Application of the analytic network process in multi-criteria analysis of sustainable forest management. For Ecol Manage 207:157–170

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly founded by the EU-research project “SilviStrat” (EVK2-CT-00073) and the EU-research project “CarboInvent” (EVK2-CT-2002-00147). The digital soil map was made available by the Federal Institute for Geosciences and Natural Resources and the digital map of forest districts by the Forest Institute in Brandenburg (Landesforstanstalt Eberswalde). The authors further wish to thank the Forest Institute in Brandenburg for their cooperation in organising the stakeholder workshop and the participating stakeholders for their inputs through discussions and questionnaire responses. We gratefully acknowledge Matthias Dieter, Thies Eggers, Dietmar Jäger for helpful comments, the participants of COST E21 meetings for inspiring discussions and Pia Gottschalk and Anastasia Galkin for technical support. Two anonymous reviewers provided helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Fürstenau.

Additional information

Communicated by Jürgen Bauhus

An Erratum for this article can be found at http://dx.doi.org/10.1007/s10342-006-0128-4

Appendices

Appendix A

The following functions were used as utility functions of the decision criteria. They are linear functions defined by supporting points (Table 6) and are valid between the particular minimum and maximum values of the decision criterion.

$$ f_{1} = \left\{ {\begin{array}{*{20}c} {0;}{x <x_{1} } \\ {b_{1} x + b_{2} ;}{x_{1} \le x \le x_{2} } \\ {1;}{x >x_{2} } \\ \end{array} } \right. $$
(6)
$$ f_{2} = \left\{ {\begin{array}{*{20}c} {0;}{x <x_{1} } \\ {b_{1} x + b_{2} ;}{x_{1} \le x <x_{2} } \\ {b_{3} x + b_{4} ;}{x_{2} \le x <x_{3} } \\ {b_{5} x + b_{6} ;}{x_{3} \le x \le x_{4} } \\ {1;}{x >x_{4} } \\ \end{array} } \right. $$
(7)
$$ f_{3} = \left\{ {\begin{array}{*{20}c} {0;}{x <x_{1} } \\ {b_{1} x + b_{2} ;}{x_{1} \le x <x_{2} } \\ {b_{3} x + b_{4} ;}{x_{2} \le x \le x_{3} } \\ {1;}{x >x_{3} } \\ \end{array} } \right. $$
(8)
$$ f_{4} = \left\{ {\begin{array}{*{20}c} {b_{1} x + b_{2} ;}{x <x_{1} } \\ {1;}{x_{1} \le x \le x_{2} } \\ {b_{3} x + b_{4} ;}{x >x_{2} } \\ \end{array} } \right. $$
(9)
$$ f_{5} = \left\{ {\begin{array}{*{20}c} {1;}{x <x_{1} } \\ {b_{1} x + b_{2} ;}{x_{1} \le x \le x_{2} } \\ {0;}{x >x_{2} } \\ \end{array} } \right. $$
(10)
Table 6 Parameters of the utility functions of the lowest-level decision criteria (Eqs. 6, 7, 8, 9, 10)

Appendix B

The values of decision criteria (Table 7) under the chosen six management strategies and three climate scenarios and the achievement values of decision criteria (Table 8) are described in Appendix B.

Table 7 Values of the decision criteria for all management strategies (MS, compare Table 3) under three climate scenarios
Table 8 Utility values of the lowest-level criteria for all management strategies (MS, compare Table 3) under three climate scenarios

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fürstenau, C., Badeck, F.W., Lasch, P. et al. Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur J Forest Res 126, 225–239 (2007). https://doi.org/10.1007/s10342-006-0114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-006-0114-x

Keywords

Navigation