Skip to main content

Root Exudates Dominate the Colonization of Pathogen and Plant Growth-Promoting Rhizobacteria

  • Chapter
  • First Online:
Root Biology

Part of the book series: Soil Biology ((SOILBIOL,volume 52))

Abstract

Plant secretes a large part of photosynthetic products as root exudates to rhizosphere for better growth surrounded by a variety of abiotic and biotic factors. Pathogens and plant growth-promoting rhizobacteria (PGPR) are the most important biotic factors which impact the plant health. How these two groups of microbe compete in the rhizosphere for niches and nutrition is well studied, and the roles of root exudates play between the pathogen and PGPR interaction and competition for colonization are also investigated recently. Plants try their best to recruit beneficial microbes by root exudates when they are needed, while pathogens also made their efforts to recognize the components of root exudates from their hosts. This chapter summarized the recent data referred to the root exudates and rhizosphere, especially the interaction between plant and soil microbes and also raised several aspects which are still limitedly known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192(1):71–79

    Article  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-La-Peña C, Jasinaski M, Santelia D et al (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146(2):762–771

    Article  CAS  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A et al (2009a) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017

    Article  CAS  Google Scholar 

  • Badri DV, Weir L, Lelie DVD, Vivanco JM (2009b) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650

    Article  CAS  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Vivanco JM (2013a) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288(42):4502–4512

    Article  CAS  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013b) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40(11):983–995

    Article  CAS  Google Scholar 

  • Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434(7030):217–221

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Benhamou N, Gagné S, Le QD, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90(1):45

    Article  CAS  Google Scholar 

  • Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L (2007) Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol Biochem 39(5):1230–1233

    Article  CAS  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun A, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258

    Chapter  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74(3):738

    Article  CAS  Google Scholar 

  • Burr TJ, Caesar A, Schrolh MN (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2(1):1–20

    Article  Google Scholar 

  • Cello FD, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S et al (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63(11):4485

    PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):525–534

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790

    Article  CAS  Google Scholar 

  • Coronado C, Zuanazzi J, Sallaud C, Quirion JC, Esnault R, Husson HP et al (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol 108(2):533–542

    Article  CAS  Google Scholar 

  • Curir P, Dolci M, Lanzotti V, Taglialatela-Scafati O (2001) Kaempferide triglycoside: a possible factor of resistance of carnation ( Dianthus caryophyllus ) to Fusarium oxysporum, f. sp. dianthi. Phytochemistry 56(7):717–721

    Article  CAS  Google Scholar 

  • Curir P, Dolci M, Galeotti F (2010) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f.sp. dianthi pathosystem. J Phytopathol 153(2):65–67

    Article  Google Scholar 

  • Davidson IA, Robson MJ (1986) Effect of contrasting patterns of nitrate application on the nitrate uptake, N2-fixation, nodulation and growth of white clover. Ann Bot 57(3):331–338

    Article  Google Scholar 

  • De Leij LF, Sutton EJ, Whipps JM, Fenlon JS, Lynch JM (1995) Impact of field release of genetically modified pseudomonas fluorescens on indigenous microbial populations of wheat. Appl Environ Microbiol 61(9):3443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144(2):199–205

    Article  CAS  Google Scholar 

  • Edwards J, Johnson C, Santosmedellín C, Lurie E, Podishetty NK, Bhatnagar S et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112(8):E911

    Article  CAS  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE et al (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109(7):2666–2671

    Article  CAS  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1993) Treatment of potato tubers with a growth promoting Pseudomonas sp.: Plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150(1):51–60

    Article  Google Scholar 

  • Fu L, Ruan Y, Tao C, Shen Q (2016) Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Sci Rep 6:27731

    Article  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48(8):1081–1091

    Article  CAS  Google Scholar 

  • Glandorf DCM, Bakker PAHM, Loon LCV (1997) Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Plant Biol 46(1):85–104

    CAS  Google Scholar 

  • Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol 87:711–715

    Article  CAS  Google Scholar 

  • Hallmann J, Mahaffee WF, Kloepper JW, Quadthallmann A (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hamlen RA, Lukezic FL, Bloom JR (1972) Influence of age and stage of development on the neutral carbohydrate. Can J Plant Sci 52(4):633–642

    Article  CAS  Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36(1):311–327

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuer erfahrungen und probleme auf dem gebiet der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaf 32:1405–1417

    Google Scholar 

  • Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129(2):117

    Article  CAS  Google Scholar 

  • Houlden A, Timmswilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65(2):193

    Article  CAS  Google Scholar 

  • Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y et al (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286(28):24649

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006a) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact 19(10):1121–1126

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006b) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19(3):250

    Article  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56(1):211–236

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    Article  CAS  Google Scholar 

  • Kwak YS, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM (2012) Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biol Biochem 54(6):48–56

    Article  CAS  Google Scholar 

  • Lee RB (1988) Phosphate influx and extracellular phosphatase activity in barley roots and rose cells. New Phytol 109(2):141–148

    Article  CAS  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J et al (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of Fluorescent Pseudomonads. Appl Environ Microbiol 61(3):1004–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277(7):5360

    Article  CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J Cell Mol Biol 57(3):389

    Article  CAS  Google Scholar 

  • Liu Y, Zhang N, Qiu M, Feng H, Vivanco JM, Shen Q et al (2014) Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol Lett 353(1):49

    Article  CAS  Google Scholar 

  • Liu Y, Chen L, Wu G, Feng H, Zhang G, Shen Q et al (2017) Identification of root-secreted compounds involved in the communication between cucumber, the beneficial bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. Mol Plant Microbe Interact 30(1):53

    Article  CAS  Google Scholar 

  • Loon LCV, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11(4):184–191

    Article  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225(2):301–310

    Article  CAS  Google Scholar 

  • Lynch JM (1987) The rhizosphere. Wiley Interscience, Chichester

    Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UG, Alves VM, Wang YH et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92(4):367–389

    Article  Google Scholar 

  • Miller HJ, Henken G, Veen JAV (1989) Variation and composition of bacterial populations in the rhizospheres of maize, wheat, and grass cultivars. Can J Microbiol 35(6):656–660

    Article  Google Scholar 

  • Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125(4):1978

    Article  CAS  Google Scholar 

  • Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56(417):1729–1739

    Article  CAS  Google Scholar 

  • Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI7. FEMS Microbiol Ecol 23(3):183–193

    Article  CAS  Google Scholar 

  • Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18(8):365–373

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie Agronomie Société Et Environnement 15(2):327–337

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P, Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Soil Sci Soc Am J 72(6):339–353(15)

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361

    Article  CAS  Google Scholar 

  • Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279(11):2022–2035

    Article  CAS  Google Scholar 

  • Ruan Y, Kotraiah V, Straney DC (1995) Flavonoids stimulate spore germination in Fusarium solani pathogenic in legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol Plant Microbe Interact 8(6):929–938

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67(10):4742–4751

    Article  CAS  Google Scholar 

  • Steinkellner S, Mammerler R, Vierheilig H (2005) Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. J Plant Interact 1(1):23–30

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  Google Scholar 

  • Straney D, Khan R, Tan R, Bagga S (2002) Host recognition by pathogenic fungi through plant flavonoids. Adv Exp Med Biol 505:9

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15(2):183–190

    Article  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3(1):38–40

    Article  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5(3):240–245

    Article  CAS  Google Scholar 

  • Uren N (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipiero P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York. English 1–21

    Google Scholar 

  • Wang L, Li J, Yang F, E Y, Raza W, Huang Q et al (2017) Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil. Microb Ecol 73(2):1–13

    Article  Google Scholar 

  • Wei Z, Jousset A (2017) Plant breeding goes microbial. Trends Plant Sci 22(7):555

    Article  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250

    Article  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener MS, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens1. Annu Rev Phytopathol 40(1):309

    Article  CAS  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63(9):3445

    Article  CAS  Google Scholar 

  • Windham MT, King SB (1983) Mycoflora of roots of maize plants at seedling and silking stages in Mississippi. Plant Dis 67(12):1366–1368

    Article  Google Scholar 

  • Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R et al (2017) Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem 114:238–247

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307

    Article  CAS  Google Scholar 

  • Young TR, Kucharek TA (1977) Succession of fungal communities in roots and stalks of hybrid field corn grown in Florida. J Phys Soc Jpn 21(20):1866–1872

    Google Scholar 

  • Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q et al (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agric Food Chem 61(16):3774–3780

    Article  CAS  Google Scholar 

  • Yuan J, Chaparro JM, Manter DK, hang R, Vivanco JM, Shen Q (2015a) Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem 89:206–209

    Article  CAS  Google Scholar 

  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM et al (2015b) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5(13438):121–127

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Subramanian SG, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J Cell Mol Biol 57(1):171

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, J., Raza, W., Shen, Q. (2018). Root Exudates Dominate the Colonization of Pathogen and Plant Growth-Promoting Rhizobacteria. In: Giri, B., Prasad, R., Varma, A. (eds) Root Biology. Soil Biology, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_6

Download citation

Publish with us

Policies and ethics