Skip to main content

Relationship Between Arbuscular Mycorrhizas and Plant Growth: Improvement or Depression?

  • Chapter
  • First Online:
Root Biology

Part of the book series: Soil Biology ((SOILBIOL,volume 52))

Abstract

Arbuscular mycorrhizal fungi are a kind of beneficial microorganisms in soils, which can establish symbiotic association with ~80% of terrestrial plants, namely, arbuscular mycorrhizas. The symbiosis possesses bidirectional roles in mycorrhizal fungi and host plants: host plants provide photosynthates for the fungal partner; mycorrhizal fungi absorb water and nutrients from soils to plant partner. Mycorrhizal symbiosis has a typical effect on growth performance of host plants. In general, arbuscular mycorrhizas show a promoted effect on plant growth by means of increasing water and nutrient acquisition, soil improvement, phytohormone regulation, and root morphological improvement. Occasionally, no or depressed effects of mycorrhizas on plant growth are reported. The growth depression under mycorrhization may be due to the more carbon expenditure of mycorrhizas, the nutrient status of growth substrates, and root hair status. Essentially, mycorrhizal effects on plant growth are involved in mutualistic or parasitic association. This chapter provides the explanation regarding the improved or depressed effect of arbuscular mycorrhizas in plant growth. The future prospects are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MF (2006) Water dynamics of mycorrhizas in arid soils. In: Gadd GM (ed) Fungi biogeochemical cycle. Cambridge University Press, Cambridge, pp 74–97

    Chapter  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373–389

    Google Scholar 

  • Bethlenfalvay GJ, Bayne HG, Pacovsky RS (1983) Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: The effect of phosphorus on host plant-endophyte interactions. Physiol Plant 57:543–548

    Article  CAS  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: the high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. AIBS Bull 51:923–931

    Google Scholar 

  • Bolgiano NC, Safir GR, Warncke DD (1983) Mycorrhizal infection and growth of onion in the field in relation to phosphorus and water availability. J Am Soc Hortic Sci 108:819–825

    CAS  Google Scholar 

  • Buwalda JG, Goh KM (1982) Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14:103–106

    Article  CAS  Google Scholar 

  • Buwalda JG, Stribley DP, Tinker PB (1984) The development of endomycorrhizal root systems V. The detailed pattern of development of infection and the control of Infection level by host in young leek plants. New Phytol 96:411–427

    Article  Google Scholar 

  • Chaudhary VB, Bowker MA, O’Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC (2009) Untangling the biological contributions to soil stability in semiarid shrublands. Ecol Appl 19:110–122

    Article  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    Article  CAS  Google Scholar 

  • Dugassa GD, Von Alten H, Schonbeck F (1996) Effect of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    Article  CAS  Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    Article  CAS  Google Scholar 

  • Dumas-Gaudot E, Slezack S, Dassi B, Pozo MJ, Gianinazzi-Pearson V, Gianinazzi S (1996) Plant hydrolytic enzymes (chitinases and β-1, 3-glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil 185:211–221

    Article  CAS  Google Scholar 

  • Effendy M, Wijayani BW (2008) Study of the external hyphae of AMF in understanding the function to contribution of p sorption by plants using the thin section method. J Tanah Tropika 13:241–252

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against cucumber mosaic virus in cucumber plants. Plant Soil 361:397–409

    Article  CAS  Google Scholar 

  • Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Alaoui AT, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Article  Google Scholar 

  • Graham JH, Timmer LW (1985) Rock phosphate as a source of phosphorus for vesicular-arbuscular mycorrhizal development and growth of citrus in a soilless medium. J Am Soc Hortic Sci 110:489–492

    CAS  Google Scholar 

  • Hart MM, Reader RJ (2005) The role of the external mycelium in early colonization for three arbuscular mycorrhizal fungal species with different colonization strategies. Pedobiologia 49:269–279

    Article  Google Scholar 

  • Hetrick BAD, Kitt DG, Wilson GT (1988) Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Can J Bot 66:1376–1380

    Article  Google Scholar 

  • Itoh S, Barber SA (1983) Phosphorus uptake by six plant species as related to root hairs. Agron J 75:457–461

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jifon JL, Graham JH, Drouillard DL, Syvertsen JP (2002) Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytol 153:133–142

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  Google Scholar 

  • Koch KE, Johnson CR (1984) Photosynthate partitioning in split-root citrus seedlings with mycorrhizal root systems. Plant Physiol 75:26–30

    Article  CAS  Google Scholar 

  • Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85:25–31

    Article  Google Scholar 

  • Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA–mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Li H, Ye ZH, Chan WF, Chen XW, Wu FY, Wu SC, Wong MH (2011) Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions? Environ Pollut 159:2537–2545

    Article  CAS  Google Scholar 

  • Li YJ, Liu ZL, Hou HY, Lei H, Zhu XC, Li XH, He XY, Tian CJ (2013) Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol Plant 35:3465–3475

    Article  CAS  Google Scholar 

  • Liu RJ (1989) Effects of vesicular-arbuscular mycorrhizas and phosphorus on water status and growth of apple. J Plant Nutr 12:997–1017

    Article  CAS  Google Scholar 

  • Liu CY, Wu QS (2017) Responses of plant growth, root morphology, chlorophyll and indoleacetic acid to phosphorus stress in trifoliate orange. Biotechnology 16:40–44

    Google Scholar 

  • Liu RJ, Li M, Meng XX, Liu X, Li XL (1999) Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema 19:91–96

    Google Scholar 

  • Liu CY, Srivastava AK, Zhang DJ, Zou YN, Wu QS (2016) Exogenous phytohormones and mycorrhizas modulate root hair configuration of trifoliate orange. Not Bot Horti Agrobo 44:548–556

    Article  CAS  Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    Article  CAS  Google Scholar 

  • Lü LH, Wu QS (2017) Mycorrhizas promote plant growth, root morphology and chlorophyll production in white clover. Biotechnology 16:34–39

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano AM (2003) Contribution of six arbuscular mycorrhizal fungi isolates to water uptake by Lactuca sativa L. plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249

    Article  Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effects of drought stress on growth and water relation of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10:115–119

    Article  CAS  Google Scholar 

  • Nelsen CE, Safir GR (1982) The water relations of well-watered, mycorrhizal and non-mycorrhizal onion plants. J Am Soc Hortic Sci 107:71–74

    Google Scholar 

  • Novero M, Genre A, Szczyglowski K, Bonfante P (2008) Root hair colonization by mycorrhizal fungi. In: Emons AMC, Ketelaar T (eds) Root hairs. Springer, Berlin, pp 315–338

    Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply (analysis of carbon costs). Plant Physiol 101:1063–1071

    Article  CAS  Google Scholar 

  • Peng SL, Shen H, Zhang YT, Guo T (2012) Compare different effect of arbuscular mycorrhizal colonization on soil structure. Acta Ecol Sin 32:863–870

    Article  CAS  Google Scholar 

  • Purin S, Rillig MC (2007) Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol Lett 279:8–14

    Article  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:860–880

    Article  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albertó EO, Menéndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot 68:135–141

    Article  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1156

    Article  CAS  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380

    Article  Google Scholar 

  • Subrammanian KS, Charest C (1999) Acquisition of N by external hyphae of arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered condition. Mycorrhiza 9:69–75

    Article  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Van Der Heijden MG (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    Article  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • White RH (1992) Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci 32:1392–1396

    Article  Google Scholar 

  • Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  Google Scholar 

  • Wu T, Tan ZY (2005) Vesicular arbuscular mycorrhiza and its function on phosphorus in soil. Hunan Agric Sci 2:41–43. (in Chinese with English abstract)

    Google Scholar 

  • Wu QS, Zou YN (2009) Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp Agric Sci 92:33–38

    Google Scholar 

  • Wu QS, Zou YN (2013) Mycorrhizal symbiosis alters root H+ effluxes and root system architecture of trifoliate orange seedlings under salt stress. J Anim Plant Sci 23:143–148

    CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Wu QS, Levy Y, Zou YN (2009) Arbuscular mycorrhizae and water relations in citrus. In: Tennant P, Benkeblia N (eds), Citrus II. Tree and forestry science and biotechnology (Special Issue 1). Global Science Press, USA, pp 105–112

    Google Scholar 

  • Wu QS, Zou YN, He XH (2010a) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  Google Scholar 

  • Wu QS, Zou YN, He XH (2010b) Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int J Agric Biol 12:576–580

    Google Scholar 

  • Wu QS, Zou YN, He XH, Luo P (2011) Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Plant Growth Regul 65:273–278

    Article  CAS  Google Scholar 

  • Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68:27–35

    Article  CAS  Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013) AMF–induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Wu QS, Yuan FY, Fei YJ, Li L, Huang YM (2014) Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover. Acta Pratac Sin 23:269–275. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Wu QS, Liu CY, Zhang DJ, Zou YN, He XH, Wu QH (2016a) Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 26:237–247

    Article  CAS  Google Scholar 

  • Wu QS, Wang S, Srivastava AK (2016b) Mycorrhizal hyphal disruption induces changes in plant growth, glomalin-related soil protein and soil aggregation of trifoliate orange in a core system. Soil Tillage Res 160:82–91

    Article  Google Scholar 

  • Yao Q, Wang LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Article  Google Scholar 

  • Yu JX, Li M, Liu RJ (2009) Advances in the study of interactions between mycorrhizal fungi and plant hormones. J Qingdao Agric Univ 26:4–7. (in Chinese with English abstract)

    Google Scholar 

  • Zhang FS, Shen JB, Zhang JL, Zuo YM, Li L, Chen XP (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

  • Zhang X, Wang L, Ma F, Zhang SJ, Xu YN, Li Z, Fu SJ (2012a) Effects of nitrogen and biological fertilizer coupling on rice resource utilization. J Harbin Inst Technol 44:39–42. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang YT, Zhu M, Xian Y, Shen H, Zhao J, Guo T (2012b) Influence of mycorrhizal inoculation on competition between plant species and inorganic phosphate forms. Acta Ecol Sin 32:7091–7101. (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Zou YN, Wang P, Liu CY, Ni QD, Zhang DJ, Wu QS (2017) Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci Rep 7:41134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Plan in Scientific and Technological Innovation Team of Outstanding Young Scientist, Hubei Provincial Department of Education (T201604).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lü, LH., Zou, YN., Wu, QS. (2018). Relationship Between Arbuscular Mycorrhizas and Plant Growth: Improvement or Depression?. In: Giri, B., Prasad, R., Varma, A. (eds) Root Biology. Soil Biology, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_18

Download citation

Publish with us

Policies and ethics