Skip to main content
Log in

Alleviation of salt stress in Lotus glaber by Glomus intraradices

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Lotus glaber is a glycophytic, perennial legume from Europe that occurs widely in saline habitats. We evaluated the effect of mycorrhizal fungus colonization on the response to salt stress of two genotypes of L. glaber differing in their tolerance to salinity. The experiment consisted of a randomized block design with two factors: (1) mycorrhizal fungus treatments (with or without AM fungus) and (2) two salinity levels of 0 and 200 mM NaCl. Our results indicated that Glomus intraradices established a more efficient symbiosis with the tolerant than with the sensitive genotype. G. intraradices improved growth of L. glaber plants under saline conditions. They showed higher values of net growth, shoot/root and K+/Na+ ratios, and protein concentrations than controls. Tolerant AM plants also showed higher chlorophyll levels than non-AM ones. Prevention of Na+ accumulation in the plant and enhancement of K+ concentrations in roots observed in this work could be part of the general mechanism of salt stress alleviation of L. glaber by G. intraradices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24:1311–1323

    Article  CAS  Google Scholar 

  • Augé RM (2000) Stomatal behaviour of arbuscular mycorrhizal plants. In Arbuscular mycorrhizas: physiology and functions. In: Kapulnik Y, Douds DD (eds), Kluwer Academic Publishers, Dordrecht, pp 201–237

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica: a hybrid in response to increasing soil NaCl. Trees 15:186–194

    Article  CAS  Google Scholar 

  • Feng G, Zhang FS Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Finlay R, Söderström B (1992) Mycorrhiza and Carbon Flow to the soil. In: Allen MF (eds), Mycorrhizal functioning. An integrative plant-fungal process. Chapman and Hall, New York, pp 134–162

    Google Scholar 

  • Flowers TJ, Yeo A (1986) Ion relations of plant under drought and salinity. Aust J Plant Physiol 25:75–91

    Google Scholar 

  • Fodor F, Cseh E, Varga A, Zaray G (1998) Lead uptake, distribution and remobilization in cucumber. J Plant Nutr 21:1363–1373

    CAS  Google Scholar 

  • Gemma JN, Koske RE, Habte M (2002) Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. Am J Bot 89:337–345

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fert Soils 38:170–175

    Article  Google Scholar 

  • Goss MJ, de Varennes A (2002) Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology and Biochemistry 34:1167–1173

    Article  CAS  Google Scholar 

  • Grant WF (1999) Interspecific hybridization and amphydiploidy of Lotus as it relates to phylogeny and evolution. In: Beuselinck PR (eds), Birdsfoot Trefoil: The Science and Technology of Lotus. Am Soc Agr pp. 43–60

  • Gupta R, Krishnamurthy KV (1996) Response of mycorrhizal and nonmycorrhizal Arachis hypogeae to NaCl and acid stress. Mycorrhiza 6:145–149

    Article  CAS  MATH  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil-salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • McConigle TP, Miller MH, Evans DH, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McArthur DAJ, Knowles R (1993) lnfluence of Vesicular-Arbuscular Mycorrhizal Fungi on the Response of Potato to Phosphorus Deficiency. Plant Physiol 101:147–160

    PubMed  CAS  Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Mendoza RE, Pagani EA (1997) Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J Plant Nutr 20:625–639

    Article  CAS  Google Scholar 

  • Montes L (1988) Lotus tenuis. Revista Argentina de Producción Animal 8:367–376

    Google Scholar 

  • Mujica MM, Rumi CP1998 A technique of vegetative propagation by stem cuttings was fitted to Lotus tenuis. Lotus Newslett 29

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 20:239–250

    Article  Google Scholar 

  • Munns R, Passioura JB (1984) Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Aust J Plant Physiol 25:497–507

    Google Scholar 

  • Paz R, Sánchez D, Pieckenstain F, Maiale S, Sannazzaro A, Cuevas J, Chiesa A, Bona G, Ruiz O (2005) Molecular and biochemical approximation of polyamine roles in tolerance mechanisms to salt stress in Lotus spp. Lotus Newslett 35:31–32

    Google Scholar 

  • Pfeiffer CM, Bloss HE (1987) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Article  Google Scholar 

  • Philips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plants species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependence under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Powell CL (1975) Potassium uptake by endotrophic mycorrhizas (Griselinia littoralis, Glomus microcarpus, Fungi). In Endomycorrhizas; Proceedings of a Symposium. p. 461–468

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plantarum 98:767–772

    Article  CAS  Google Scholar 

  • Sannazzaro A, Ruiz O, Albertó E, Menéndez A (2004) Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin. Mycorrhiza 14:139–142

    Article  PubMed  Google Scholar 

  • Zhu JK, Liu JP, Xiong LM (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Consejo Nacional de Investigaciones Cienfíficas y Técnicas (CONICET, Argentina), the Agencia Nacional de Promoción Científica y Tecnológica (PICT 14194), the EU-INCO Lotassa Project, Comisión de Investigación Científica (CIC), The Iberoamerican network for biofertilizers Biofag (CYTED). A.I.S is a CONICET fellow, A.B.M. is a researcher of the Universidad de Buenos Aires (UBA) and CONICET. O.A.R. and E.O.A. are members of the research committee of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bernardina Menéndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sannazzaro, A., Ruiz, O.A., Albertó, E.O. et al. Alleviation of salt stress in Lotus glaber by Glomus intraradices . Plant Soil 285, 279–287 (2006). https://doi.org/10.1007/s11104-006-9015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9015-5

Keywords

Navigation