Skip to main content
Log in

Plant hydrolytic enzymes (chitinases and β-1,3-glucanases) in root reactions to pathogenic and symbiotic microorganisms

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Within the last decade, a great deal of attention has been devoted to the role of chitinases and β-1,3-glucanases in plant/microbe interactions. While there is strong evidence that these hydrolases are antifungal proteins, there are also recent indications of roles in both plant morphogenesis and plant/microbe signal perception. This paper reviews recent findings pertinent to root/microbe interactions, and discusses the nature and significance of specific hydrolase isoforms in symbioses with arbuscular mycorrhizal (AM) fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht C, Asselin A, Piche Y and Lapeyrie F 1994a Chitinase activities are induced inEucalyptus globulus roots, by ectomycorrhizal or pathogenic fungi, during early infection. Physiol. Plant. 90, 104–110.

    Article  Google Scholar 

  • Albrecht C, Burgess T, Dell B and Lapeyrie F 1994b Chitinase and peroxidase activities are induced inEucalyptus roots according to the aggressiveness of australian ectomycorrhizal strains ofPisolithus sp. New Phytol. 127, 217–222.

    Google Scholar 

  • Albrecht C, Laurent P and Lapeyrie F 1994cEucalyptus root and shoot chitinases, induced following root colonization by pathogenic versus ectomycorrhizal fungi, compared on one and two-dimensional activity gels. Plant Sci. 100, 157–164.

    Article  Google Scholar 

  • Anas O, Alli I and Reeleder R 1988 Inhibition of germination of sclerotia ofSclerotinia sclerotiorum by chitinase. Phytopathol. 78, 1594.

    Google Scholar 

  • Arlorio M, Ludwig A, Boller T and Bonfante P 1992a Inhibition of fungal growth by plant chitinases and β-1,3-glucanases. A morphological study. Protoplasma 171, 34–43.

    Article  Google Scholar 

  • Arlorio M, Ludwig A, Boller T, Mischiati P and Bonfante P 1992b Effects of chitinase and β-1,3-glucanase from pea on the growth of saprophytic, pathogenic and mycorrhizal fungi. Giorn. Bot. Ital. 126, 956–958.

    Google Scholar 

  • Bartnicki-Garcia S 1968 Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108.

    Article  PubMed  Google Scholar 

  • Benhamou N 1993 Spatio-temporal regulation of defense genes: immunocytochemistry.In Mechanisms of Plant Defense Responses. Eds. B Fritig and M Legrand. pp 221–235. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Benhamou N and Asselin A 1989 Attempted localization of a subtrate for chitinases in plant cells reveals abundant N-acetyl-D-glucosamine residues in secondary walls. Biol. Cell 67, 341–350.

    Article  Google Scholar 

  • Benhamou N, Broglie K, Chet I and Broglie R 1993 Antifungal effect of bean endochitinase onRhizoctonia solani: ultrastructural changes and cytochemical aspects of fungal breakdown. Can. J. Micobiol. 39, 318–328.

    Google Scholar 

  • Benhamou N, Grenier J, Asselin A and Legrand M 1989 Immunogold localization ofβ-1,3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1, 1209–1221.

    Article  PubMed  Google Scholar 

  • Benharnou N, Joosten M H A J and De Wit P J G M 1990 Subcellular localization of chitinase and its potential substrate in tomato root tissues infected byFusarium oxysporum f.sp.radicis-lycopersici. Plant Physiol. 92, 1108–1120.

    Google Scholar 

  • Blee K A and Anderson A J 1996 Defense-related transcript accumulation inPhaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungusGlomus intraradices Schenck and Smith. Plant Physiol. 110, 675–688.

    PubMed  Google Scholar 

  • Bol J F, Linthorst H J M and Cornelissen B J C 1990 Plant pathogenesis-related proteins induced by virus infection. Annu. Rev. Phytopathol. 28, 113–138.

    Article  Google Scholar 

  • Boller T 1987 Hydrolytic enzymes in plant disease resistance.In Plant-Microbe Interactions Molecular and Genetic Perspectives. Eds. T Kosuge and E W Nester. pp 385–414. Macmillan Publishing Company, New York, USA.

    Google Scholar 

  • Boller T 1993 Antimicrobial functions of the plant hydrolases, chitinase andβ-1,3-glucanase.In Mechanisms of Plant Defense Responses. Eds. B Fritig and M Legrand. pp 391–401. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Boller T, Gehri A, Mauch F and Vögeli U 1983 Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157, 22–31.

    Article  Google Scholar 

  • Bonfante-Fasolo P and Perotto S 1992 Plants and endomycorrhizal fungi: the cellular and molecular basis of their interaction.In Molecular Signals in Plant-Microbe Communications. Ed. D P S Verma. pp 445–470. CRC Press, London.

    Google Scholar 

  • Broekaert W F, Leyns F, Joos H and Peumans W J 1989 A chitinbinding lectin from stinging nettle rhizomes with antirungal properties. Science 245, 1100–1102.

    Google Scholar 

  • Broekaert W F, Terras F R G, Cammue B P A and Vanderleyden J 1990 An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 65, 55–60.

    Google Scholar 

  • Broekaert W F, Van Parijs J, Allen A K and Peumans W J 1988 Comparison of some molecular, enzymatic and antifungal properties of chitinases from thornapple, tobacco and wheat. Physiol. Mol. Plant Pathol. 33, 319–331.

    Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J and Broglie R 1991 Transgenic plants with enhanced resistance to the fungal pathogenRhizoctonia solani. Science 254, 1194–1197.

    Google Scholar 

  • Cabib E, Silverman S J and Shaw J A 1992 Chitinase and chitine synthase 1: counterbalancing activities in cell separation ofSaccharomyces cerevisiae. J. Gen. Microbiol. 138, 97–102.

    PubMed  Google Scholar 

  • Caron M 1989 Potential use of mycorrhizae in control of soil-borne diseases. Can. J. Plant Pathol. 11, 177–179.

    Google Scholar 

  • Collinge D B, Kragh K M K, Mikkelsen J D, Nielsen K K, Rasmussen U and Vad K 1993 Plant chitinases. Plant J. 3, 31–40.

    Article  PubMed  Google Scholar 

  • Cordier C, Gianinazzi and Gianinazzi-Pearson V 1996 Colonization patterns of root tissues byPhytophthora nicotianae var.parasitica related to reduced disease in mycorrhizal tomato. Plant and Soil 185, 223–232.

    Google Scholar 

  • Dassi B Dumas-Gaudot E, Asselin A, Richard C and Gianinazzi S 1996 Chitinase andβ-1,3-glucanase isoforms expressed in pea roots inoculated with arbuscular mycorrhizal or pathogenic fungi. EJPP 102, 105–108.

    Google Scholar 

  • De Jong A, Cardewener J, Lo Schiavo F, Terzi M, Vanderkerckhove J, Van Kammen J and De Vries S C 1992 A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4, 425–433.

    Article  PubMed  Google Scholar 

  • De Jong A J, Heidstra R, Spaink H P, Hartog M V, Meijer E A, Hendricks T, Schiavo F L, Terzi M, Bisseling T, van Kammen A and De Vries S C 1993Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5, 615–620.

    PubMed  Google Scholar 

  • Dehne H W 1982 Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathol. 72, 1115–1119.

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V and Gianinazzi S 1989 First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.). Plant Sci. 60, 215–222.

    Article  Google Scholar 

  • Dumas E, Gianinazzi-Pearson V and Gianinazzi S 1989 Production of new soluble proteins during VA endomycorrhiza formation. Agric. Ecosyst. Environ. 29, 111–114.

    Article  Google Scholar 

  • Dumas-Gaudot E, Asselin A, Gianinazzi-Pearson V, Gollotte A and Gianinazzi S 1994a Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci. 99, 27–37.

    Article  Google Scholar 

  • Dumas-Gaudot E, Furlan V, Grenier J and Asselin A 1992a New acidic chitinase isoforms induced in tobacco roots by vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 1, 133–136.

    Google Scholar 

  • Dumas-Gaudot E, Grenier J, Furlan V and Asselin A 1992b Chitinase, chitosanase andβ-1,3 glucanase activities inAllium andPisum roots colonized byGlomus species. Plant Sci. 84, 17–24.

    Article  Google Scholar 

  • Dumas-Gaudot E, Guillaume P, Tahiri-Alaoui A, Gianinazzi-Pearson V and Gianinazzi S 1994b Changes in polypeptide patterns in tobacco roots colonized by twoGlomus species. Mycorrhiza 4, 215–221.

    Article  Google Scholar 

  • El Ghachtouli N, Paynot M, Morandi D, Martin-Tanguy J and Gianinazzi S 1995 The effect of polyamines on endomycorrhizal infection of wild-typePisum sativum, cv. Frisson (nod+myc+) and two mutants (nod-myc+ and nod-myc-). Mycorrhiza 5, 189–192.

    Article  Google Scholar 

  • Flach J, Pilet P E and Jolles P 1992 What's new in chitinase research? Experientia 48, 701–716.

    PubMed  Google Scholar 

  • Franken P and Gnadinger F 1994 Analysis of parsley arbuscular endomycorrhiza: Infection development and mRNA levels of defense-related genes. MPMI 7, 612–620.

    Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Franken P, Dumas-Gaudot E, van Tuinen D, Samra A, Martin-Laurent F and Dassi B 1995 Molecules and genes involved in mycorrhiza functioning.In Biotechnology of Ectomycorrhizae. Eds. V Stocchi, P Bonfante and M Nuti. pp 67–76. Plenum Press, New York, USA.

    Google Scholar 

  • Gianinazzi-Pearson V 1995 Morphofunctional compatibility in interactions between roots and arbuscular endomycorrhizal fungi: molecular mechanisms, genes and gene expression.In Pathogenesis and host-parasite specificity in Plant Diseases. Eds. K Kahmoto, R P Singh and U S Singh. pp 251–263. Pergamon Press, Elsevier Science, Oxford, UK.

    Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P and Gianinazzi S 1995 Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi.In Advances in Molecular Genetics of Plant-Microbe Interactions. Eds. M J Daniels, J A Downie and A E Osbourne. pp 179–186. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A and Gianinazzi S 1996 Cellular and molecular defense-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol. 133, 45–58.

    Google Scholar 

  • Gianinazzi-Pearson V, Lemoine M C, Arnould C, Gollotte A and Morton J B 1994 Localization ofβ-1,3-glucans in spore and hyphal walls of fungi in the Glomales. Mycologia 86, 477–484.

    Google Scholar 

  • Gianinazzi-Pearson V, Tahiri-Alaoui A, Antoniw J F, Gianinazzi S and Dumas E 1992 Weak expression of the pathogenesis related PR-b 1 gene and localization of related protein during symbiotic endomycorrhizal interactions in tobacco roots. Endocytobiosis Cell Res. 8, 177–185.

    Google Scholar 

  • Govers F, Nap J P, Van Kammen A and Bisseling T 1987 Nodulins in the developing root nodule. Plant Physiol. Biochem. 25, 309–322.

    Google Scholar 

  • Graham S L and Sticklen M B 1993 Plant chitinases. Can. J. Bot. 72, 1057–1083.

    Google Scholar 

  • Grosskopf E, Cam Ha D T, Wingender R, Röhrig H, Sceczi J, Kondorsoi E, Schell J and Kondorosi A 1993 Enhanced levels of chalcone synthase in alfalfa nodules induced by a Fix-mutant ofRhizobium meliloti. MPMI 6, 173–181.

    Google Scholar 

  • Hahn M G, Bucheli P, Cervone F, Doares S H, O'Neil R A, Darvill A and Albersheim P 1989 Roles of cell wall constituents in plant-pathogen interactions.In Plant-Microbe Interactions: Molecular and Genetic Perspectives. Eds. T Kosuge and E W Nester. pp 131–181. McGraw-Hill, New York, USA.

    Google Scholar 

  • Harrison M J and Dixon R A 1993 Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots ofMedicago truncatula. MPMI 6, 643–654.

    Google Scholar 

  • Hooker J E, Jaizme-Vega M and Atkinson D 1994 Biocontrol of plant pathogens using arbuscular mycorrhizal fungi.In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Eds. S Gianinazzi and H Schüepp. pp 191–200. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • Huynh Q K, Hironaka C M, Levine E B, Smith C E, Borgmeyer J R and Shah D M 1992 Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J. Biol. Chem. 267, 6635–6640.

    PubMed  Google Scholar 

  • Jach G, Gönhardt B, Mundy J, Logemann J, Pinsdorf E, Leach R, Schell J and Maas C 1995 Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8, 97–109.

    Article  PubMed  Google Scholar 

  • Jach G, Logemann S, Wolf G, Oppenheim H, Chet I, Schell J and Logemann J 1992 Expression of a bacterial chitinase leads to improved resistance of transgenic tobacco plants against fungal infection. Biopractice 1, 1–9.

    Google Scholar 

  • Kuc J 1987 Plant immunization and its applicability for disease control.In Innovative Approaches to Plant Disease Control. Ed. I Chet. pp 255–274. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Kuranda M J and Robbins P W 1991 Chitinase required for cell separation during the growth ofSaccharomyces cerevisiae. J. Biol. Chem. 266, 19758–19767.

    PubMed  Google Scholar 

  • Lamb C J, Lawton M A, Dron M and Dixon R A 1989 Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56, 215–224.

    Article  PubMed  Google Scholar 

  • Lambais M R and Mehdy M C 1993 Suppression of endochitinase,β-1,3 endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. MPMI 6, 75–83.

    Google Scholar 

  • Lawton K A, Beck J, Potter S, Ward E and Ryals J 1993 Regulation of cucumber class III chitinase gene expression. MPMI 7, 48–57.

    Google Scholar 

  • Leach R, Tommerup H, Svendsen I and Mundy J 1991 Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266, 1564–1573.

    PubMed  Google Scholar 

  • Lemoine M C, Gollotte A, Gianinazzi-Pearson V and Gianinazzi S 1995β(1–3) glucan localization in walls of the endomycorrhizal fungiGlomus mosseae (Nicol. and Gerd.) Gerd. and Trappe andAcaulospora laevis (Gerd. and Trappe) during colonization of host roots. New Phytol. 29, 97–105.

    Google Scholar 

  • Linderman R G 1994 Role of VAM fungi in biocontrol.In Mycorrhizae and Plant Health. Eds. Pfleger and R G Linderman. pp 1–27. The American Phytopathological. Society Press, St Paul, USA.

    Google Scholar 

  • Ludwig A and Boller T 1990 A method for the study of fungal growth inhibition by plant proteins. FEMS Microbiol. Lett. 69, 61–66.

    Google Scholar 

  • Martin F, Lapeyrie F and Tagu D 1996 Altered gene expression during ectomycorrhiza development.In The Mycota. Eds. P Lemke and G Caroll. Springer Verlag, Berlin, Germany (In press).

    Google Scholar 

  • Martin F and Tagu D 1995 Ectomycorrhiza development: a molecular perspective.In Mycorrhiza: Function, molecular Biology and Biotechnology. Eds. B Hock and A Varma. pp 29–58. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Matton P D and Brisson N 1989 Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. MPMI 2, 325–331.

    PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B and Boller T 1988 Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase andβ-1,3-glucanase. Plant Physiol. 88, 936–942.

    Google Scholar 

  • Melchers L S, Ponstein A S, Sela-Buurlage M B, Vloemans S A and Cornelissen B J C 1993 In vitro anti-microbial activities of defense proteins and biotechnology.In Mechanisms of Plant Defense Responses. Eds. B Fritig and M Legrand. pp 401–410. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Morandi D, Bailey J A and Gianinazzi-Pearson V 1984 Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol. Plant Pathol. 24, 357–364.

    Google Scholar 

  • Morandi D 1996 Occurence of phytoalexins and phenolic compounds in endomycorrhizal interactions and their potential role in biological control. Plant and Soil 185, 241–251.

    Google Scholar 

  • Nap J P and Bisseling T 1990 The roots of nodulins. Physiol. Plant. 79, 407–44.

    Article  Google Scholar 

  • Nielsen K K, Jorgensen P and Mikkelsen J D 1994 Antifungal activity of sugar beet chitinase againstCercospora beticola: an autoradiographic study on cell wall degradation. Plant Pathol. 43, 979–986.

    Google Scholar 

  • Ordentlich A, Elad T and Chet I 1988 The role of chitinase ofSerratia marcecens in biocontrol ofSclerotium rofsii. Phytopathology 78, 84–88.

    Google Scholar 

  • Parniske M, Zimermann C, Cregan P and Werner D 1990 Hypersensitive reaction of nodule cells in theGlycine sp./Bradyrhizobium japonicum-symbiosis occurs at the genotype-specific level. Acta Bot. 103, 143–148.

    Google Scholar 

  • Rast D M, Horsch M, Furter R and Gooday G 1991 A complex chitinolytic system in exponentially growing mycelium ofMucor rouxii properties and function. J. Gen. Microbiol. 137, 2797–2810.

    PubMed  Google Scholar 

  • Roberts W K and Selitrennikoff C P 1988 Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134, 169–176.

    Google Scholar 

  • Ryals J, Uknes S and Ward E 1994 Systemic acquired resistance. Plant Physiol. 104, 1109–1112.

    PubMed  Google Scholar 

  • Sahai A S and Manocha M S 1993 Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev. 11, 317–338.

    Google Scholar 

  • Samac D A and Shah D M 1994 Effect of chitinase antisense RNA expression on disease susceptibility ofArabidopsis plants. Plant Mol. Biol. 25, 587–596.

    PubMed  Google Scholar 

  • Samac D A, Hironaka C M, Yallaly P E and Shah D M 1990 Isolation and characterization of the genes encoding basic and acidic chitinase inArabidopsis thaliana. Plant Physiol. 93, 907–914.

    Google Scholar 

  • Samac D A and Shah D M 1991 Developmental and pathogen-induced activation of theArabidopsis acidic chitinase promoter. Plant Cell 3, 1063–1072.

    Article  PubMed  Google Scholar 

  • Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V and Gianinazzi S 1996 Studies of in vivo polypeptide synthesis in non-mycorrhizal and arbuscular mycorrhizal (Glomus mosseae) pea roots.In Mycorrhizas in integrated systems from genes to plant development. Eds. C Azcon-Aguilar and J M Barea. pp 263–266. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Sauter M and Hager A 1989 The mycorrhizal fungusAmanita muscaria induces chitinase activity in roots and in suspension-cultured cells of its hostsPicea abies. Planta 179, 61–66.

    Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U and Boller T 1986 Plant chitinases are potent inhibitors of fungal growth. Nature 324, 365–367.

    Google Scholar 

  • Schultze M, Kondorosi E, Kondorosi A, Staehelin C, Mellor R B and Boller T 1993 The sulfate group on the reducing end protects Nod signal ofR. meliloti against hydrolysis byMedicago chitinases.In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W Newton. pp 159–164. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A, Melchers L S, Van der Elzer P J M and Cornelissen B J C 1993 Only specific tobacco (Nicotiani tabacum) chitinases andβ-1,3- glucanases exhibit antifungal activity. Plant Physiol. 101, 857–863.

    PubMed  Google Scholar 

  • Shapira R, Ordentlich A, Chet I and Oppenheim A B 1989 Control of plant diseases by chitinase expressed from cloned DNA inEscherichia coli. Phytopathology 79, 1246–1249.

    Google Scholar 

  • Simmons C R 1994 The physiology and molecular biology of plant 1,3-β-D-glucanases and 1,3;1,4-β-D-glucanases. Crit. Rev. Plant Sci. 13, 325–387.

    Google Scholar 

  • Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A and Bonfante-Fasolo P 1989 Chitinase in roots of mycorrhizalAllium porrum: regulation and localization. Planta 177, 447–455.

    Article  Google Scholar 

  • Staehelin C, Granado J, Muller J, Wiemken A, Mellor R B, Felix G, Regenass M Broughton W J and Boller T 1994a Perception ofRhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc. Natl. Acad. Sci. USA 91, 2196–2204.

    PubMed  Google Scholar 

  • Staehelin C, Muller J, Mellor R B, Wiemken A and Boller T 1992 Chitinase and peroxidase in effective (fix+) and ineffective (fix) soybean nodules. Planta 187, 295–300.

    Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor R B, Baller T and Kondorosi A 1994b Structural modifications inRhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J. 5, 319–330.

    Article  Google Scholar 

  • Starnaud M, Hamel C, Caron M and Fortin J A 1995 Inhibition ofPythium ultimum in roots and growth substrate of mycorrhizalTagetes patula colonized withGlomus intraradices. Can. J. Plant Pathol. 16, 187–194.

    Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M and Fritig B 1993 Plant “pathogenesis-related” proteins and their role in defense against pathogens. Biochimie 75, 687–706.

    Article  PubMed  Google Scholar 

  • Tahiri-Alaoui A, Dumas E and Gianiazzi S 1990 Detection of PR-b proteins in tobacco roots infected withChalara elegans. Plant Mol. Biol. 14, 869–871.

    PubMed  Google Scholar 

  • Trudel J and Asselin A 1989 Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178, 362–366.

    Article  PubMed  Google Scholar 

  • Tuzun S and Kloepper J 1994 Induced systemic resistance by plant growth-promoting rhizobacteria.In Proceedings of the Third International Workshop on Plant Growth-Promoting Rhizobacteria. Eds. M H Ryder, P M Stephens and G D Bawen. pp 104–109. CSIRO Division of soils, Adelaide, Australia.

    Google Scholar 

  • Vance C P 1983Rhizobium infection and nodulation: a beneficial plant disease. Annu. Rev. Microbiol. 37, 399–424.

    Article  PubMed  Google Scholar 

  • Vasse J, Billy F and Truchet G 1993 Abortion of infection during theRhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J. 4, 555–556.

    Google Scholar 

  • Verburg J G and Huynh Q K 1991 Purification and characterization of an antifungal chitinase fromArabidopsis thaliana. Plant Physiol. 95, 450–455.

    Google Scholar 

  • Vierheilig H, Alt M, Mohr U, Boller T and Wiemken A 1994 Ethylene biosynthesis and activities of chitinases andβ-1,3 glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation withGlomus mosseae. J. Plant Physiol. 143, 337–343.

    Google Scholar 

  • Vierheilig H, Alt M, Neuhaus J M, Boller T and Wiemken A 1993 Colonization of transgenicNicotiana sylvestris plants expressing different forms ofNicotiana tabacum chitinase, by the root pathogenRhizoctonia solani and by the mycorrhizal symbiontGlomus mosseae. MPMI 6, 261–264.

    Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A and Boller T 1995 Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungusGlomus mosseae. Appl. Environ. Microbiol. 61, 3031–3034.

    Google Scholar 

  • Volpin H, Elkind Y, Okon Y and Kapulnik Y 1994 A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense resonse in alfalfa roots. Plant Physiol. 104, 683–689.

    PubMed  Google Scholar 

  • Werner D, Mellor R B, Hahn M and Grisebach H 1985 Soybean host response to symbiotic infection. Glyceollin I accumulation in an ineffective type of soybean nodules with an early loss of the peribacteroid membane. Z. Naturforsch. 40, 179–181.

    Google Scholar 

  • Wessels J G H and Siestma J H 1981 Fungal cell walls: A survey.In Encyclopedia of Plant Physiology, New series, Plant Carbohydrates II. Eds. W Tanner and F A Loewus. pp 352–394. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Wiemken V and Ineichen K 1992 Effect of neutral and pathogenic fungi on mycorrhizal and non-mycorrhizalPicea roots: transpiration and accumulation of the stress metabolite aminocy-clapropane carboxylic acid. J. Plant Physiol. 140, 605–610.

    Google Scholar 

  • Yoshikawa M, Tsuda M and Takeuchi Y 1993 Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor,β-1,3-endoglucanase from soybean. Naturwissenschaften 80, 417–420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas-Gaudot, E., Slezack, S., Dassi, B. et al. Plant hydrolytic enzymes (chitinases and β-1,3-glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil 185, 211–221 (1996). https://doi.org/10.1007/BF02257526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257526

Key words

Navigation