Skip to main content

Strategies for Optimization of the Production of Rosmarinic Acid in Salvia officinalis L. and Salvia dolomitica Codd Biomass with Several Biotechnological Approaches

  • Chapter
  • First Online:
Salvia Biotechnology

Abstract

Rosmarinic acid (RA) is a caffeic acid ester widely used by pharmaceutical and food industry. Its presence in several medicinal plant species and herb has been correlated with their biological activities and health beneficial effects. RA is widely used as additive to preserve foods, and because the chemical synthesis, even possible, remains time consuming and cost inefficient, there is a growing interest in development of biotechnological strategies to produce this compound. RA is abundant within the Lamiaceae family, particularly in plants belonging to genus Salvia. The use of plant tissues and cell cultures may represent an alternative strategy for the production of highly valuable plant metabolites and could be even adopted by pharmaceutical industries to develop new drugs and formulations. Protocols for shoots and calli regeneration, as well as cell cultures have been already established for Salvia officinalis and Salvia dolomitica with the aim to evaluate the content of RA in various tissues at different growth conditions. In particular, S. dolomitica Codd has been shown to be a good model for tissue culture studies due to its flexible propagation under in vitro conditions. The hydroxyphenylpyruvate reductase, SoHPPR, gene encoding a hydroxyphenylpyruvate reductase, a key biosynthetic enzyme of RA pathway, has been characterized in cell cultures of S. officinalis, representing a good target for metabolic engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2,4-d :

2,4-dichlorophenoxyacetic acid

4CL:

4-coumarate CoA ligase

BA:

6-benzyladenine

C4H:

Cinnamic acid 4-hydroxylase

CA:

Carnosic acid

CAR:

Carnosol

DW:

Dry weight

EO:

Essential oils

FW:

Fresh weight

HPPR:

Hydroxyphenylpyruvate reductase

HS:

Headspace

IAA:

Indol acetic acid

Kin:

Kinetin

MeJA:

Methyl jasmonate

PAL:

Phenylalanine ammonia lyase

PGR:

Plant growth regulators

RA:

Rosmarinic acid

RAS:

Rosmarinic acid synthase

SA:

Salicylic acid

SM:

Secondary metabolites

SoHPPR :

Salvia officinalis hydroxyphenylpyruvate reductase gene

TAT:

Tyrosine aminotransferase

VOCs:

Volatile organic compounds

ZEA:

Zeatin

References

  1. Marchev A, Haas C, Schulz S, Georgiev V, Steingroewer J, Bley T, Pavlov A (2014) Sage in vitro culture: a promising tool for the production of bioactive terpenes and phenolic substances. Biotech Lett 36:211–221

    Article  CAS  Google Scholar 

  2. Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of southern and eastern Africa. E.&S. Livingstone Ltd, Edinburgh, vol XII, 1457 pp

    Google Scholar 

  3. Shoemaker M, Hamilton B, Dairkee SH, Cohen I, Campbell MJ (2005) In vitro anticancer activity of twelve Chinese medicinal herbs. Phytotherapy Res 19(7):649–651

    Article  Google Scholar 

  4. Kamatou GPP, van Zyl RL, Davids H, van Heerden FR, Lourens ACU, Viljoen AM (2008) Antimalarial ad anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot 74:238–243

    Article  CAS  Google Scholar 

  5. Thorsen MA, Hildebrandt KS (2003) Quantitative determination of phenolic diterpenes in rosemary extracts: aspects of accurate quantification. J Chromatogr A 995:119–125

    Article  CAS  PubMed  Google Scholar 

  6. Kamatou GPP, Chen W, Viljoen AM (2012) Quantification of Rosmarinic acid in Salvia species indigenous to South Africa by HPTLC. J Planar Chromatogr 25(5):403–408

    Article  CAS  Google Scholar 

  7. Ruffoni B, La Pistelli, Bertoli A, Pistelli Lu (2010) Plant cell cultures: bioreactors for industrial production. Adv Exp Med Biol 698:203–218

    Article  CAS  PubMed  Google Scholar 

  8. Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137(3):287–291. https://doi.org/10.1007/BF00388164

    Article  CAS  PubMed  Google Scholar 

  9. Barberini S, Savona M, Raffi D, Leonardi M, La Pistelli, Stochmal A, Vainstein A, Pistelli Lu, Ruffoni B (2013) Molecular cloning of SoHPPR encoding a hydroxyphenylpyruvate reductase, and its expression in cell suspension cultures of Salvia officinalis. Plant Cell Tissue Organ Cult 112(3):131–138

    Article  Google Scholar 

  10. Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 6(12):e29713. https://doi.org/10.1371/journal.pone.0029713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bassolino L, Giacomelli E, Giovanelli S, Pistelli L, Cassetti A, Bisio A, Damonte G, Ruffoni B (2014) Tissue culture and aromatic profile in Salvia dolomitica Codd. Plant Cell Tissue Organ Cult 121:83–95

    Google Scholar 

  12. Cervelli C (2011) Salvie. Caratteristiche, usi e coltivazione. Schede monografiche. Ed. Ace2, pp 179–189

    Google Scholar 

  13. Caser M, Ruffoni B, Scariot V (2012) Screening for drought tollerance in Salvia spp. and Helichrysium petiolare: a way to select low maintenance ornamental plants. Act Hort 953:240–246

    Google Scholar 

  14. Cervelli C, Capponi A, Mascarello B, Ruffoni B, Del Gaudio C (2013) New species and cultivars of Salvia as ornamental pot plants. Acta Hort 1000:35–41

    Article  Google Scholar 

  15. Araújo C, Sousa MJ, Ferreira MF, Leão C (2003) Activity of essential oils from Mediterranean Lamiaceae species against food spoilage yeasts. J Food Prot 66:625–632

    Article  PubMed  Google Scholar 

  16. Kamatou GPP, Viljoen AM, Figueiredo AC, Tilney PM, Van Zyl RL, Barroso JG, Pedro LG, Van Vuuren SF (2007) Trichomes, essential oil composition and biological activities of Salvia albicaulis Benth. and S. dolomitica Codd, two species from the Cape region of South Africa. S Afr J Bot 73:102–108

    Article  CAS  Google Scholar 

  17. Ulubelen A, Öksüz S, Kolak U, Bozok-Johansson C, Çelik C, Voelter W (2000) Antibacterial diterpenes from the roots of Salvia viridis. Planta Med 66(05):458–462

    Article  CAS  PubMed  Google Scholar 

  18. Burbott AJ, Loomis WD (1967) Effects of light and temperature on the monoterpenes of peppermint. Plant Physiol 42:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santos-Gomes PC, Fernandes-Ferreira M (2001) Organ- and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. J Agric Food Chem 49(6):2908–2916

    Article  CAS  PubMed  Google Scholar 

  20. Grausgruber-Gröger S, Schmiderer C, Steinborn R, Novak J (2012) Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). J Plant Physiol 169:353–359

    Article  PubMed  Google Scholar 

  21. Bernath J, Danos B, Hethelyi E (1991) Variation in essential oil spectrum on Salvia species affected by environment. Herba Hung 30(1–2):35–48

    CAS  Google Scholar 

  22. Boelens MH, Boelens H (1997) Chemical and sensory evaluation of three sage oils. Perfum Flavor 22:19–40

    CAS  Google Scholar 

  23. Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGimpsey JA, Smallfield BM (1999) Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J Agric Food Chem 47(5):2048–2054

    Article  CAS  PubMed  Google Scholar 

  24. Cuvelier M-E, Berset C, Richard H (1994) Antioxidant constituents in sage (Salvia officinalis). J Agric Food Chem 42:665–669

    Article  CAS  Google Scholar 

  25. Lu Y, Foo LY (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75(2):197–202

    Article  CAS  Google Scholar 

  26. Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  27. Büyükbalci A, El SN (2008) Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum Nutr 63(1):27–33

    Article  PubMed  Google Scholar 

  28. Ollanketo M, Peltoketo A, Hartonen K, Hiltunen R, Riekkola ML (2002) Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: antioxidant activity of the extracts. Eur Food Res Technol 215(2):158–163

    Article  CAS  Google Scholar 

  29. Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira IC (2015) Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem 170:378–385

    Article  CAS  PubMed  Google Scholar 

  30. Fisher VL (2005) Indigenous Salvia species—an investigation of the antimicrobial activity, anti-oxidant activity and chemical composition of leaf extracts. M.Sc. dissertation, University of the Witwatersrand, Johannesburg, South Africa

    Google Scholar 

  31. Kamatou GPP, Viljoen AM, Gono-Bwalya AB, van Zyl RL, van Vuuren SF, Lourens ACU, Başer KHC, Demirci B, Lindsey KL, van Staden J, Steenkamp P (2005) The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. J Ethnopharmacol 102(3):382–390

    Article  CAS  PubMed  Google Scholar 

  32. Tomás-Barberán FA, Tomas-Lorente F, Rumbero A (1990) Anti-fungal phloroglucinol derivatives and lipophilic flavonoids from Helichrysum decumbens. Phytochemistry 28(6):1613–1615

    Article  Google Scholar 

  33. Kamatou PP, Viljoen A, Steenkamp P (2010) Antioxidant, anti-inflammatory activities and HPLC analysis of South African Salvia species. Food Chem 119:684–688

    Article  CAS  Google Scholar 

  34. Faleiro ML, Miguel MG, Ladeiro F, Venancio F, Tavares R, J Brito C, Figueiredo AC, Barroso JG, Pedro LG (2003) Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett Appl Microbiol 36:35–40

    Google Scholar 

  35. Kamatou GPP, van Vuuren SF, van Heerden FR, Seaman T, Viljoen AM (2007) Antibacterial ad antimycobacterial activities of South African Salvia species and isolated compounds from S. chamelaegnea. S Afr J Bot 73:552–557

    Article  CAS  Google Scholar 

  36. Scarpati ML, Oriente G (1958) Isolamento e costituzione dell’acido rosmarinico dal (Rosmarinus off.). Ric Sci 28:2329–2333

    CAS  Google Scholar 

  37. Lu Y, Foo LY (1999) Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51:91–94

    Article  CAS  Google Scholar 

  38. Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP (2010) Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem 123(1):85–91

    Article  CAS  Google Scholar 

  39. Zimmermann BF, Walch SG, Tinzoh LN, Stühlinger W, Lachenmeier DW (2011) Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J Chromatogr B 879(24):2459–2464

    Article  CAS  Google Scholar 

  40. Parnham MJ, Kesselring K (1985) Rosmarinic acid. Drugs Future 10(9):756–757

    Google Scholar 

  41. Bandoniene D, Murkovic M, Venskutonis PR (2005) Determination of rosmarinic acid in sage and borage leaves by high-performance liquid chromatography with different detection methods. J Chromatogr Sci 43(7):372–376

    Article  CAS  PubMed  Google Scholar 

  42. Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49(11):5165–5170

    Article  CAS  PubMed  Google Scholar 

  43. Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53(20):7749–7759

    Article  CAS  PubMed  Google Scholar 

  44. Fecka I, Turek S (2007) Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. J Agric Food Chem 55(26):10908–10917

    Article  CAS  PubMed  Google Scholar 

  45. Grzegorczyk I, Wysokińska H (2010) Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor. Acta Soc Botanicorum Pol 79(1):7–10

    Google Scholar 

  46. Roby MHH, Sarhan MA, Selim KAH, Khalel KI (2013) Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod 43:827–831

    Article  CAS  Google Scholar 

  47. Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petersen M, Abdulla Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70(15–16):1663–1679

    Article  CAS  PubMed  Google Scholar 

  49. Kelley CJ, Mahajan JR, Brooks LC, Neubert LA, Breneman WR, Carmack M (1975) Polyphenolic acids of Lithospermum ruderale (Boraginaceae). I. Isolation and structure determination of lithospermic acid. J Org Chem 40(12):1804–1815

    Article  CAS  Google Scholar 

  50. Petersen M, Hausler E, Karwatzki B, Mainhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell culture of Coleus blumei. Plant Cell Tissue Organ Cult 38:171–179

    Article  Google Scholar 

  51. Petersen M (1997) Cytochrome p450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172

    Article  CAS  Google Scholar 

  52. Häusler E, Petersen M, Alfermann A (1992) Rosmarinsäure in Blechnum-spezies. In: Botanikertagung H, Haschke P, Schnarrenberger C (eds) Akademie-Verlag, Berlin, p 507

    Google Scholar 

  53. Ravn H, Pedersen MF, Borum J, Andary C, Anthoni U, Christophersen C, Nielsen PH (1994) Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40:51–61

    Article  Google Scholar 

  54. Litvinenko VI, Popova TP, Simonjan AV, Zoz IG, Sokolov VS (1975) “Gerbstoffe” und oxyzimtsäureabkömmlinge in Labiaten. Planta Med 27:372–380

    Article  CAS  PubMed  Google Scholar 

  55. Hiller K (1965) Zur Kenntnis der Inhaltsstoffe einiger Saniculoidae. 1. Mitteilung: Sanicula europaea L.—Isolierung und quantitative Erfas-sung von Chlorogen-und Rosmarinsäure. Pharmazie 20:574–579

    CAS  PubMed  Google Scholar 

  56. Trute A, Nahrstedt A (1996) Separation of rosmarinic acid enantiomers by three different chromatographic methods (HPLC, CE, GC) and the determination of Rosmarinic Acid in Hedera helix L.

    Google Scholar 

  57. De Tommasi N, De Simone F, De Feo V, Pizza C (1991) Phenylpropanoid glycosides and rosmarinic acid from Momordica balsamina. Planta Med 57:201

    Article  PubMed  Google Scholar 

  58. Aquino R, Ciavatta ML, De Simone F, Pizza C (1990) A flavanone glycoside from Hamelia patens. Phytochemistry 29:2358–2360

    Article  CAS  Google Scholar 

  59. Holzmannova V (1995) Kyselina rosmarinová její biologická aktivita. Chem Listy 90:486–496

    Google Scholar 

  60. Satake T, Kamiya K, Saiki Y, Hama T, Fujimoto Y, Kitanaka S, Kimura Y, Uzawa J, Endang H, Umar M (1999) Studies on the constituents of fruits of Helicteres isora L. Chem Pharm Bull 47:1444–1447

    Article  CAS  Google Scholar 

  61. Lasure A, Van Poel B, Pieters L, Claeys M, Gupta M, Vanden Berghe D, Vlietinck AJ (1994) Complement-inhibiting properties of Apeiba tibourbou. Planta Med 60:276–277

    Article  CAS  PubMed  Google Scholar 

  62. Simmonds MSJ, Stevenson PC, Hanson FE (submitted) Rosmarinic acid in Canna generalis (Cannaceae) activates the medial deterrent chemosensory neurone and deters feeding in the tobacco hornworm, Manduca sexta (Lepidoptera). Physiol Entomol

    Google Scholar 

  63. Takeda R, Hasegawa J, Sinozaki M (1990) The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, Anthocerotae (hornworts). Tetrahedron Lett 31:4159–4162

    Article  CAS  Google Scholar 

  64. Chen JH, Ho C-T (1997) antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45(7):2374–2378

    Article  CAS  Google Scholar 

  65. Furtado C, Moraes F, Carvalho ADM (2008) Geometric phases in graphitic cones. Phys Lett A 372:5368

    Google Scholar 

  66. Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Inyushkina YV (2011) Application of Agrobacterium rol genes in plant biotechnology: a natural phenomenon of secondary metabolism regulation. In: Prof. Alvarez M (ed) Genetic transformation, vol 13, pp 261–270

    Google Scholar 

  67. Sanchez-Medina A, Etheridge CJ, Hawkes GE, Hylands PJ, Pendry BA, Hughes MJ, Corcoran O (2007) Comparison of rosmarinic acid content in commercial tinctures produced from fresh and dried lemon balm (Melissa officinalis). J Pharm Pharmaceut Sci 10:455–463

    Article  CAS  Google Scholar 

  68. Chun SS, Vattem DA, Lin YT, Shetty K (2005) Phenolic antioxidants from clonaloregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem 40:809–816

    Article  CAS  Google Scholar 

  69. Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18(6):485–489

    Article  CAS  Google Scholar 

  70. Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol Dec 175(6):2557–2565

    Google Scholar 

  71. Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G (2009) Clovamide and rosmarinic acid induce neuroprotective effects in vitro models of neuronal death. Br J Pharmacol 157(6):1072–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tiss Organ Cult 98:25–33

    Article  CAS  Google Scholar 

  73. Li G-S, Jiang W-L, Tian J-W, Qu G-W, Zhu H-B, Fu F-H (2010) In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine 17(3–4):282–288

    Article  CAS  PubMed  Google Scholar 

  74. Avato P, Fortunato IM, Ruta C, D’Elia R (2005) Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Sci 169:29–36

    Article  CAS  Google Scholar 

  75. Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue culture. Appl Microbiol Biotechnol 88(2):437–449

    Article  CAS  PubMed  Google Scholar 

  76. Ruffoni B, Raffi D, Rizzo A, Oleszek W, Giardi MT, Bertoli A, Pistelli L (2009) Establishment of in vitro Salvia cell biomass for the controlled production of antioxidant metabolites. Acta Hort 829:423–427

    Article  CAS  Google Scholar 

  77. Kintzios S, Nikolaou A, Skoula M (1999) Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticose leaf callus cultures. Plant Cell Rep 18:462–466

    Article  CAS  Google Scholar 

  78. Funk C, Koepp AE, Croteau R (1992) Introduction and characterization of a cytochrome P-450-dependent camphor hydroxylase in tissue culture of common sage (Salvia officinalis). Arch Biochem Biophys 294:306–313

    Article  CAS  PubMed  Google Scholar 

  79. Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  CAS  PubMed  Google Scholar 

  80. Tawfic AA, Read PE, Cuppert SL (1992) Stimulation of growth and monoterpene production of sage (Salvia officinalis) by benzylandenine in vitro. Plant Growth Regul Soc Am Q 20:200–206

    Google Scholar 

  81. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J Plant Physiol 160:1025–1032

    Article  CAS  PubMed  Google Scholar 

  82. Grzegorczyk I, Bilichowski I, Mikiciuk-Olasik E, Wysokińska H (2004) In vitro cultures of Salvia officinalis L. as a source of antioxidant compounds. Acta Soc Botanicorum Pol 74. https://doi.org/10.5586/asbp.2005.003

  83. Murashige T, Skoog F (1962) A revised method for rapid growth and biassays with tobacco tissue cultures. Physiol Plant 15:472–497

    Article  Google Scholar 

  84. Van Der Plas LHW, Eijkelboom C, Hagendoorn MJM (1995) Relation between primary and secondary metabolism in plant cell suspensions. Plant Cell Tissue Organ Cult 43:111–116

    Article  Google Scholar 

  85. Areias F, Valentão P, Andrade PB, Ferreres F, Seabra RM (2000) Flavonoids and phenolic acids of sage: influence of some agricultural factors. J Agric Food Chem 48:6081–6084

    Article  CAS  PubMed  Google Scholar 

  86. Hohmann J, Zupkó I, Rédei D, Csányi M, Falkay G, Máthé I, Janicsák G (1999) Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation. Planta Med 65:576–578

    Article  CAS  PubMed  Google Scholar 

  87. Lamaison JL, Petitjean-Freytet C, Carnat A (1990) Teneures en acide rosmarinique, en dérivés hydroxycinnamiques totaux et activité antioxydant chez les Apiacées, les Borraginacées et les Lamiacées médicinales. Ass Pharm Fr 48:103–108

    CAS  Google Scholar 

  88. Lamaison JL, Petitjean-Freytet C, Carnat A (1991) Lamiacées médicinales à propriétés antioxydantes, sources potentielles d’acid rosmarinic. Pharm Acta Helv 66:185–188

    CAS  PubMed  Google Scholar 

  89. Wang M, Li J, Rangarajan M, Shao Y, LaVoie EJ, Huang T-C, Ho C-T (1998) Antioxidative phenolic compounds from sage (Salvia officinalis). J Agric Food Chem 46:4869–4873

    Article  CAS  Google Scholar 

  90. Lindsey K, Jones MGK (1995) Plant biotechnology in agriculture. Wiley, Chichester

    Google Scholar 

  91. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M (2002) Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Sci 162:981–987

    Article  CAS  Google Scholar 

  92. Grzegorczyk I, Matkowski A, Wysokińska H (2007) Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem 104:536–541

    Article  CAS  Google Scholar 

  93. Grzegorczyk I, Wysokińska H (2008) Liquid shoot cultures of Salvia officinalis L. for micropopagration and production of antioxidant compounds; effect of triacontanol. Acta Soc Pol 77:99–104

    Article  CAS  Google Scholar 

  94. Grzegorczyk I, Wysokińska H (2009) The effect of methyl jasmonate on production of antioxidant compounds in shoot cultures of Salvia officinalis L. Herba Pol 55(3)

    Google Scholar 

  95. Kračun-Kolarević M, Dmitrović S, Filipović B, Perić M, Mišić D, Simonović A, Todorović S (2015) Influence of sodium salicylate on rosmarinic acid, carnosol and carnosic acid accumulation by Salvia officinalis L. shoots grown in vitro. Biotech Lett 37:1693–1701

    Article  Google Scholar 

  96. Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological roles in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 1–14 (ISBN-10 1-4020-5184-0)

    Chapter  Google Scholar 

  97. Kang S-M, Jung H-Y, Kang Y-M, Yun D-J, Bahk J-D, Yang J-K, Choi M-S (2004) Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolina parviflora. Plant Sci 166:745–751

    Article  CAS  Google Scholar 

  98. Li W, Koike K, Asada Y, Yoshikawa T, Nokaido T (2005) Rosmarinic acid production by Coleus forskohlii hairy root cultures. Plant Cell Tissue Organ Cult 80:151–155

    Article  CAS  Google Scholar 

  99. Rowshan V, Khosh Khoi M, Javidnia K (2010) Effects of salicylic acid on quality and quantity of essential oil components in Salvia macrosiphon. J Biol Environ Sci 4:77–82

    Google Scholar 

  100. La Pistelli, Giovannini A, Ruffoni B, Bertoli A, Pistelli Lu (2010) Hairy root cultures for secondary metabolites production. Adv Exp Med Biol 698:167–184

    Article  Google Scholar 

  101. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Google Scholar 

  102. Mascarello C, Mantovani E, Ruffoni B (2006) In vitro culture of several ornamental and medicinal Salvia species. Acta Hortic 723:375–380

    Google Scholar 

  103. Fernandes VF, Bezerra L, da S. Feijó EVR, Silva D, Oliveira R, Mielke MS, do B. Costa LC (2013) Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Rev Bras Farmacogn [online] 23(3):419–424

    Google Scholar 

  104. Arikat NA, Jawad FM, Karam NS, Shibli RA (2003) Micropropagation and accumulation of essential oils in wide sage (Salvia fruticosa Mill.). Sci Hortic 100:193–202

    Article  Google Scholar 

  105. Azam A, Qian J, Zhang B, Xu C, Chen K (2013) Citrus leaf volatiles as affected by developmental stageand genetic type. Int J Mol Sci 14(9):17744–17766

    Google Scholar 

  106. Croteau R, Felton M, Karp F, Kjonaas R (1981) Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol 67:820–824

    Google Scholar 

  107. Kumar A (2015) Metabolic engineering in plants. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi

    Google Scholar 

  108. Petersen M, Hausler E, Meinhard J, Karwatzki B, Gertlowski C (1994) The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei. Plant Cell Tiss Org Cult 38:171–179

    Article  CAS  Google Scholar 

  109. Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–332

    Article  CAS  PubMed  Google Scholar 

  110. Eberle D, Ullmann P, Werk-Reichhart D, Petersen M (2009) CDNA cloning and functional characterization of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in Rosmarinic acid biosynthesis. Plant Mol Biol 69:239–253

    Article  CAS  PubMed  Google Scholar 

  111. Janiak V, Petersen M, Zentgraf M, Klebe G, Heine A (2010) Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. Acta Crystallogr D Biol Crystallogr 66:593–603

    Article  CAS  PubMed  Google Scholar 

  112. Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch C: Biosci 43:501–504

    CAS  Google Scholar 

  113. Häusler E, Petersen M, Alfermann AW (1991) Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Z Naturforsch 46(c):371–376

    Google Scholar 

  114. Wenping H, Yuan Z, Jie S, Lijun Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279

    Article  PubMed  Google Scholar 

  115. Chen H, Chen F, Zhang Y-L, Song J-Y (1999) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotechnol 22(3):133–138

    Article  CAS  Google Scholar 

  116. Zhang Y, Song J, Qi J, Lu G (1997) The plant regeneration of Salvia miltiorrhiza Bge. Transformed by Agrobacterium. Zhongguo Zhong Yao Za Zhi 22(5):274–275 (in Chinese)

    Google Scholar 

  117. Yan Y, Wang Z (2007) Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Organ Cult 88:175

    Article  CAS  Google Scholar 

  118. Luwańska A, Wielgus K, Seidler-Łożykowska K, Lipiński D, Słomski R (2017) Evaluation of Agrobacterium tumefaciens usefulness for the transformation of sage (Salvia officinalis L.). In: Transgenesis and secondary metabolism, pp 153–176

    Google Scholar 

  119. Barberini S (2014) Biotechnological approach in Lamiaceae species for the production of antioxidant and antibacterial compounds. PhD thesis

    Google Scholar 

  120. Hücherig S, Petersen M (2012) RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy roots cultures of Coleus blumei. Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-012-0277-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ruffoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savona, M. et al. (2017). Strategies for Optimization of the Production of Rosmarinic Acid in Salvia officinalis L. and Salvia dolomitica Codd Biomass with Several Biotechnological Approaches. In: Georgiev, V., Pavlov, A. (eds) Salvia Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-73900-7_6

Download citation

Publish with us

Policies and ethics