Skip to main content

Biotechnology: A Tool in Termite Management

  • Chapter
  • First Online:
Termites and Sustainable Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Termites are the silent invaders, which affect life and property. Being regarded as one of the important agricultural and urban pests, they are of national and international concern to scientists and farmers in particular and to masses in general. It is being estimated that the annual cost of termite damage to the buildings in USA is greater than that of combined cost of fires, storms, and floods, as such hinting an urgent need for termite management. Control strategies have shifted focus on biotechnological approaches for all-inclusive termite management. Biotechnology, globally recognized as a rapidly emerging and far-reaching field, is the “technology of hope” for its promising role in food, health, and environmental sustainability. Latest and enduring advances in life sciences offer a promising scenario, with a large number of agri- and industrial biotech products that have enormously helped mankind. Biotechnology is necessary to sustain an agriculture competitive and remunerative and to achieve nutrition security in the face of major present challenges. Investment in agricultural-related biotechnology has resulted in significantly enhanced research and development capability and institutional building over the years. However, progress has been rather slow in converting the research leads into usable product. In this chapter, therefore, we examine the potential of biotechnology as a tool in termite management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albuquerque, L. P., Santana, G. M. S., Pontual, E. V., Napoleao, T. H., Coelho, L. C. B. B., & Paiva, P. M. G. (2012). Effect of Microgramma vaccinifolia rhizome lectin on survival and digestive enzymes of Nasutitermes corniger (Isoptera, Termitidae). International Biodeterioration and Biodegradation, 75, 158–166.

    Article  CAS  Google Scholar 

  • Alonso, D. M., Wettstein, S. G., Bond, J. Q., Root, T. W., & Dumesic, J. A. (2011). Production of biofuels from cellulose and corn stover using alkylphenol solvents. ChemSusChem, 4, 1078–1081.

    Article  CAS  PubMed  Google Scholar 

  • Alves, R. R. N. (2009). Fauna used in popular medicine in Northeast Brazil. Journal of Ethnobiology and Ethnomedicine, 5, 1–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves, R. R. N., & Alves, H. N. (2011). The faunal drugstore: Animal-based remedies used in traditional medicines in Latin America. Journal of Ethnobiology and Ethnomedicine, 7, 1–43.

    Article  Google Scholar 

  • Anankware, P. J., Fening, K. O., Osekre, E., & Obeng-Ofori, D. (2015). Insects as food and feed: A review. International Journal of Agricultural Research Review, 3, 143–151.

    Google Scholar 

  • Banjo, A. D., Lawal, O. A., & Songonuga, E. A. (2006). The nutritional value of fourteen species of edible insects in Southwestern Nigeria. African Journal of Biotechnology, 5, 298–301.

    CAS  Google Scholar 

  • Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    Article  CAS  PubMed  Google Scholar 

  • Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., & Feldmann, P. (2007). Control of Coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 132–226.

    Article  CAS  Google Scholar 

  • Belles, X., Martın, D., & Piulachs, M. D. (2005). The mevalonate pathway and the synthesis of juvenile hormone in insects. Annual Review of Entomology, 50, 181–199.

    Article  CAS  PubMed  Google Scholar 

  • Bignell, D. E. (2011). Morphology, physiology, biochemistry and functional design of the termite gut: An evolutionary wonderland. In D. E. Bignell DE, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 375–412). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bishosha, M. K., & Boloy, N. (1995). Termitary soil and dried peanut straw as market-garden fertilizers in Yangambi (Zaire). Cahiers Agricultures, 4, 125–128.

    Google Scholar 

  • Black, H. I. J., & Okwakol, M. J. N. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of termites. Applied Soil Ecology, 6, 37–53.

    Article  Google Scholar 

  • Boucias, D. G., Stokes, C., Storey, G., & Pendland, J. C. (1996). The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachrichten Bayer, 49, 103–144.

    Google Scholar 

  • Breznak, J. A. (2000). Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 209–231). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Breznak, J. A., & Brune, A. (1993). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.

    Article  Google Scholar 

  • Brinn, P. J., Black, H. I. J., Spurway, J. K. R., & Mzezewa, J. (1994) Land microvariability in Southwest Zimbabwe; photointerpre- tive identifications of land microvariability. In SADC, proceedings of the 4th annual scientific conference of the SADC-LW and MP research programme, October 1993, Windhoek, Namibia, SADC, Gabarone.

    Google Scholar 

  • Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In H. Konig & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 243–269). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.

    Google Scholar 

  • Bulmer, M. S., & Crozier, R. H. (2004). Duplication and diversifying selection among termite antifungal peptides. Molecular Biology and Evolution, 21, 2256–2264.

    Article  CAS  PubMed  Google Scholar 

  • Bulmer, M. S., & Crozier, R. H. (2006). Variation in positive selection in termite GNBPs and Relish. Molecular Biology and Evolution, 23, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Bulmer, M. S., Bachelet, I., Raman, R., Rosengaus, R. B., & Sasisekharan, R. (2009). Targeting an antimicrobial effect or function in insect immunity as a pest control strategy. Proceedings of the National Academy of Sciences of the United States of America, 106, 12652–12657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Sun, J. Z., Rodriguez, J. M., & Lee, K. C. (2010). Hydrogen emission by three wood-feeding subterranean termite species (Isoptera: Rhinotermitidae): Production and characteristics. Insect Science, 17, 237–244.

    Article  CAS  Google Scholar 

  • Carter, S. E., & Murwira, H. K. (1995). Spatial variability in soil fertility management and communal farming in Mutoko Communal Area, Zimbabwe. Ambio, 24, 77–84.

    Google Scholar 

  • Chouvenc, T., NY, S., & Grace, J. K. (2011). Fifty years of attempted biological control of termites–analysis of a failure. Biological Control, 59, 69–82.

    Article  Google Scholar 

  • Cleveland, L. R. (1928). Further observations and experiments on the symbiosis between termites and their intestinal protozoa. The Biological Bulletin, 54, 231–237.

    Article  CAS  Google Scholar 

  • Cook, D. M., & Doran-Peterson, J. (2010). Mining diversity of the natural biorefinery housed within Tipula abdominalis larvae for use in an industrial biorefinery for production of lignocellulosic ethanol. Insect Science, 17, 303–312.

    Article  CAS  Google Scholar 

  • Cornette, R., Koshikawa, S., Hojo, M., Matsumoto, T., & Miura, T. (2006). Caste-specific cytochrome P450 in the damp-wood termite Hodotermopsis sjostedti. Insect Molecular Biology, 15, 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Cornette, R., Gotoh, H., Koshikawa, S., & Miura, T. (2008). Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti. Journal of Insect Physiology, 54, 922–930.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Leonardo, A. M. (2006). Morphology of the sternal gland in workers of Coptotermes gestroi (Isoptera, Rhinotermitidae). Micron, 37, 551–556.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Neto, E. M. (2005). Entomotherapy, or the Medicinal Use of Insects. Journal of Ethnobiology, 25, 93–114.

    Article  Google Scholar 

  • Coy, M. R., Salem, T. Z., Denton, J. S., Kovaleva, E. S., & Liu, Z. (2010). Phenol-oxidizing laccases from the termite gut. Insect Biochemistry and Molecular Biology, 40, 723–732.

    Article  CAS  PubMed  Google Scholar 

  • Culliney, T. W., & Grace, J. K. (2000). Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bulletin of Entomological Research, 90, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • De Visse, S. N., Freymann, B. P., & Schnyder, H. (2008). Trophic interactions among invertebrates in termitaria in the African savanna: A stable isotope approach. Ecological Entomology, 33, 758–764.

    Google Scholar 

  • Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49, 71–92.

    Article  CAS  PubMed  Google Scholar 

  • Dossey, A. T. (2010). Insects and their chemical weaponry: New potential for drug discovery. Natural Product Reports, 27, 1737–1757.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, B. J., Michael, J. B., Jay, D. B., Bruce, S., Ronald, E. H., Charles, C. L., & Kurt, W. (2012). Plant cell walls to ethanol. The Biochemical Journal, 442, 241–252.

    Article  CAS  Google Scholar 

  • Elliott, K. L., Hehman, G. L., & Stay, B. (2009). Isolation of the gene for the precursor of Phe-Gly-Leu-amide allatostatins in the termite Reticulitermes flavipes. Peptides, 30, 85–560.

    Google Scholar 

  • Eutick, M. L., Veivers, P., O Brien, R. W., & Slaytor, M. (1978). Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. Journal of Insect Physiology, 24, 363–368.

    Article  CAS  Google Scholar 

  • Figueirêdo, R. E. C., Vasconcellos, A., Policarpo, I. S., & Alves, R. R. N. (2015). Edible and medicinal termites: A global overview. Journal of Ethnobiology and Ethnomedicine, 11, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fire, A., Xu, S., Mary, K., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  • Geib, S. M., Tien, M., & Hoover, K. (2010). Identification of proteins involved in lignocellulose degradation using in gel zymogram analysis combined with mass spectroscopy-based peptide analysis of gut proteins from larval Asian longhorned beetles, Anoplophora glabripennis. Insect Science, 17, 253–264.

    Article  CAS  Google Scholar 

  • Gibney, E. (2014). Termite-inspired robots build castles. Nature. https://doi.org/10.1038/nature.2014.14713.

  • Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800.

    Article  CAS  PubMed  Google Scholar 

  • Grace, J. K. (1997). Biological control strategies for suppression of termites. Journal of Agricultural Entomology, 14, 281–289.

    Google Scholar 

  • Grace, J. K. (2003). Approaches to biological control of termites. Sociobiology, 41, 115–121.

    Google Scholar 

  • Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100, 3366–3373.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, C., & Bulmer, M. S. (2012). Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Developmental and Comparative Immunology, 36, 372–377.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, C., Lay, F., & Bulmer, M. S. (2011). Subterranean termite prophylactic secretions and external antifungal defenses. Journal of Insect Physiology, 57, 259–1266.

    Article  CAS  Google Scholar 

  • Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Hartke, T. R., & Baer, B. (2011). The mating biology of termites: A comparative review. Animal Behaviour, 82, 927–936.

    Article  Google Scholar 

  • Hattori, A., Sugime, Y., Sasa, C., Miyakawa, H., & Ishikawa, Y. (2013). Soldier morphogenesis in the dampwood termite is regulated by the insulin signaling pathway. The Journal of Experimental Zoology B, 320, 295–306.

    Article  CAS  Google Scholar 

  • Hayashi, Y., Lo, N., Miyata, H., & Kitade, O. (2007). Sex-linked genetic influence on caste determination in a termite. Science, 318, 985–987.

    Article  CAS  PubMed  Google Scholar 

  • Heather, N. W. (1971). The exotic drywood termite Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae) and endemic Australian drywood termites in Queensland. Australian Journal of Entomology, 10, 134–141.

    Article  Google Scholar 

  • Hmidet, N., Ali, N. E., Haddar, A., Kanoun, S., Alya, S., & Nasri, M. (2009). Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47, 71–79.

    Article  CAS  Google Scholar 

  • Holt, J. A. (1987). Carbon mineralization in semi-arid northeastern Australia: The role of termites. Journal of Tropical Ecology, 3, 255–263.

    Article  Google Scholar 

  • Holt, J. A., & Coventry, R. J. (1988). The effects of tree clearing and pasture establishment on a population of mound-building termites (Isoptera) in north Queensland, Australia. Australian Jorunal of Ecology, 13, 321–326.

    Article  Google Scholar 

  • Hongoh, Y. (2011). Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 68, 1311–1325.

    Article  CAS  PubMed  Google Scholar 

  • Howard, R. W., & Haverty, M. I. (1979a). Comparison of feeding substrates for evaluating effects of insect growth regulators on subterranean termites. Journal of Georgia Entomological Society, 14, 3–7.

    CAS  Google Scholar 

  • Howard, R. W., & Haverty, M. I. (1979b). Termites and juvenile hormone analogs: A review of methodology and observed effects. Sociobiology, 4, 269–278.

    Google Scholar 

  • Hrd’y, I., Kuldova, J., & Wimmer, Z. (2004). Juvenogens as potential agents in termite control: Laboratory screening. Pest Management Science, 60, 1035–1042.

    Article  CAS  Google Scholar 

  • Hrd’y, I., Kuldov’a, J., Hanus, R., & Wimmer, Z. (2006). Juvenile hormone III, hydroprene and a juvenogen as soldier caste differentiation regulators in three Reticulitermes species: Potential of juvenile hormone analogues in termite control. Pest Management Science, 62, 848–854.

    Article  CAS  Google Scholar 

  • Huang, S. W., Zhang, H. Y., Marshall, S., & Jackson, T. A. (2010). The scarab gut: A potential bioreactor for bio-fuel production. Insect Science, 17, 175–183.

    Article  CAS  Google Scholar 

  • Hungate, R. E. (1938). Studies on the nutrition of Zootermopsis II: The relative importance of the termite and the protozoa in wood digestion. Ecology, 19, 1–25.

    Article  Google Scholar 

  • Hussain, A., Li, Y. F., Cheng, Y., Liu, Y., Chen, C. C., & Wen, S. Y. (2013). Immune-related transcriptome of Coptotermes formosanus Shiraki workers: The defense mechanism. PloS One, 8, e69543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husseneder, C., & Grace, J. K. (2005). Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Applied Microbiology and Biotechnology, 68, 360–367.

    Article  CAS  PubMed  Google Scholar 

  • Huvenne, H., & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. Journal of Insect Physiology, 56, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • James, C. (2003). Global review of commercialized transgenic crops. Current Science, 84, 303–309.

    Google Scholar 

  • Ji, R., & Brune, A. (2005). Digestion of peptidic residues in humic substances by an alkali stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biology and Biochemistry, 37, 1648–1655.

    Article  CAS  Google Scholar 

  • Jian-Zhong, S. & Scharf, M. E. (2010). Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17(3), 163–165.

    Google Scholar 

  • Johnson, E. (2009). Goodbye to carbon neutral: Getting biomass footprints right. Environmental Impact Assessment Review, 29, 165–168.

    Article  Google Scholar 

  • Jones, J. A. (1989). Environmental influences on soil chemistry in central semiarid Tanzania. Soil Science Society of America Journal, 53, 1748–1758.

    Article  CAS  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.

    Article  Google Scholar 

  • Katayama, N., Ishikawa, Y., Takaoki, M., Yamashita, M., Nakayama, S., Kiguchi, K., Kok, R., Wada, H., & Mitsuhashi, J. (2008). Entomophagy: A key to space agriculture. Advances in Space Research, 41, 701–705.

    Article  Google Scholar 

  • Ke, J., Sun, J. Z., Nguyen, H. D., Singh, D., Lee, K. C., Beyenal, H., & Chen, S. L. (2010). In-situ oxygen profiling and lignin modification in guts of wood-feeding termites. Insect Science, 17, 277–290.

    Article  CAS  Google Scholar 

  • Ke, J., Laskar, D. D., & Chen, S. (2013). Tetramethyl ammonium hydroxide (TMAH) thermochemolysis for probing in situ softwood lignin modification in each gut segment of the termite. Journal of Agricultural and Food Chemistry, 61, 1299–1308.

    Article  CAS  PubMed  Google Scholar 

  • Keya, S. O., Mureria, N. K., & Arshad, M. A. (1982). Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. Journal of Arid Environments, 5, 353–359.

    Google Scholar 

  • Kob, O. B., & Hewitt, P. H. (1990). Bird and mammal predators of the harvester termite Hodotermes mossambicus (Hagen) in semi-add regions of South Africa. South African Journal of Science, 86, 34–37.

    Google Scholar 

  • Kramm, K. R., West, D. F., & Rockenbach, P. G. (1982). Termite pathogens: Transfer of the entomopathogen Metarhizium anisopliae between Reticulitermes sp. termites. Journal of Invertebrate Pathology, 40, 1–6.

    Article  Google Scholar 

  • Lacey, L. A., Frutos, R., Kaya, H. K., & Vail, P. (2001). Insect pathogens as biological control agents: Do they have a future? Biological Control, 21, 230–248.

    Article  Google Scholar 

  • LaFage, J. P., & Nutting, W. L. (1978). Nutrient dynamics of termites. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 165–232). London: Cambridge University Press.

    Google Scholar 

  • Lamberty, M., Zachary, D., Lanot, R., Bordereau, C., Robert, A., & Hoffmann, J. A. (2001). Insect immunity constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. The Journal of the Biological Chemistry, 276, 4085–4092.

    Article  CAS  Google Scholar 

  • Landis, D. A., & Werling, B. P. (2010). Arthropods and biofuel production systems in North America. Insect Science, 17, 220–236.

    Article  Google Scholar 

  • Lawton, J. H., Bignell, D. E., Bloemers, G. F., Eggleton, P., & Hodda, M. E. (1996). Carbon flux and diversity of nematodes and termites in Cameroon forest soils forest soils. Biodiversity and Conservation, 5, 261–273.

    Article  Google Scholar 

  • Lee, K. E., & Wood, T. G. (1971). Termites and soils (p. 251). London: Academic.

    Google Scholar 

  • Lefeuve, P., & Bordereau, C. (1984). Soldier formation regulated by a primer pheromone from the soldier frontal gland in a higher termite, Nasutitermes lujae. Proceedings of the National Academy of Sciences of the United States of America, 81, 7665–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisansky, S. (1997). Microbial pesticides. In H. F. Evans (Ed.), Microbial insecticides: Novelty or necessity, British crop protection council monograph symposium proceedings (vol. 68, pp. 3–10).

    Google Scholar 

  • Liu, Y., Henderson, G., Mao, L., & Laine, R. A. (2005). Effects of temperature and nutrition on juvenile hormone titers of Coptotermes formosanus. Annals of the Entomological Society of America, 98, 732–737.

    Article  CAS  Google Scholar 

  • Lo, N., Tokuda, G., & Watanabe, H. (2011). Evolution and function of endogenous termite cellulases. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of Termites: A modern synthesis (pp. 51–67). Dordrecht: Springer.

    Google Scholar 

  • Logan, J. W. M. (1992). Termites (Isoptera) – a pest or resource for small farmers in Africa. Tropical Science, 32, 71–79.

    Google Scholar 

  • Logan, J. W. M., Cowie, R. H., & Wood, T. G. (1990). Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. Bulletin of Entomological Research, 80, 309–330.

    Article  Google Scholar 

  • Logan, J. W. M., Rajagopal, D., Wightman, J. A., & Pearce, M. J. (1992). Control of termites and other soil pests of groundnuts with special reference to controlled released formulations of non-persistent insecticides in India and Sudan. Bulletin of Entomological Research, 82, 57–66.

    Article  Google Scholar 

  • Longhurst, C., Johnson, J. A., & Wood, T. G. (1978). Predation by Megaponera foetans (Fabr) (Hymenoptera; Formicidae) on termites in the Nigerian southern guinea savanna. Oecologia, 32, 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Machida, M., Kitade, O., Miura, T., & Matsumoto, T. (2001). Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Sociaux, 48, 52–56.

    Article  Google Scholar 

  • Mamma, D., Hatzinikolaou, D., Kekos, D., Stamatis, H., & Kalogeris, E. (2009). Adsorption of major endoglucanase from Thermoascus aurantiacus on cellulosic substrates. World Journal of Microbiology and Biotechnology, 25, 781–788.

    Article  CAS  Google Scholar 

  • Martius, C. (1994). Diversity and ecology of termites in Amazo- nian forests. Pedobiologia, 38, 407–428.

    Google Scholar 

  • Mathew, G. M., Mathew, D. C., Lo, S. C., Alexios, G. M., Yang, J. C., Sashikumar, J. M., Shaikh, T. M., & Huang, C. C. (2013). Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production. Bioresource Technology, 145, 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura, K. (2001). Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos, 92, 20–26.

    Article  Google Scholar 

  • Matsuura, K., Vargo, E. L., Kawatsu, K., Labadie, P. E., & Nakano, H. (2009). Queen succession through asexual reproduction in termites. Science, 323, 1687.

    Article  CAS  PubMed  Google Scholar 

  • Mauldin, J. K., & Rich, N. M. (1980). Effect of chlortetracycline and other antibiotics on protozoan numbers in the eastern subterranean termite. Journal of Economic Entomology, 73, 123–128.

    Article  Google Scholar 

  • Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals and biorefinery concept. Progress in Energy and Combustion Science, 38, 522–550.

    Article  CAS  Google Scholar 

  • Merheb-Dini, C., Gomes, E., Boscolo, M., & Silva, R. (2009). Production and characterization of a milk-clotting protease in the crude enzymatic extract from the newly isolated Thermomucor indicae-seudaticae N31 (milk-clotting protease from the newly isolated Thermomucor indicae-seudaticae N31). Food Chemistry, 120, 87–93.

    Article  CAS  Google Scholar 

  • Meyer, V. W. (1999). Distribution and density of termite mounds in the northern Kruger National Park with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae). African Entomology, 7, 123–130.

    Google Scholar 

  • Meyer-Rochow, V. B. (2010). Entomophagy and its impact on world cultures: The need for a multidisciplinary approach. In P. B. Durst, D. V. Johnson, R. N. Leslie, & K. Shono (Eds.), Forest insects as food: Humans bite back (pp. 23–36). Thailand: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Meyer-Rochow, V. B., & Chakravorty, J. (2013). Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Applied Entomology and Zoology, 48, 105–112.

    Article  Google Scholar 

  • Mielke, H. W., & Mielke, P. W. (1982). Termite mounds and chitemene agriculture: A statistical analysis of their association in southwestern Tanzania. Journal of Biogeography, 9, 499–504.

    Article  Google Scholar 

  • Misra, J. N., & Vijayaraghavan, P. K. (1956). Ethyl malonate – an inhibitor of termite cellulase. Current Science, 25, 229–230.

    CAS  Google Scholar 

  • Miura, T., & Scharf, M. E. (2011). Molecular basis underlying caste differentiation in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 211–253). Dordrecht: Springer.

    Google Scholar 

  • Moorhead, D. L., & Reynolds, J. F. (1991). A general model of litter decomposition in the northern Chihuahuan desert. Ecological Modelling, 56, 197–219.

    Article  CAS  Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14, 578–597.

    Article  CAS  Google Scholar 

  • Naveena, B. M., Mendiratta, S. K., & Anjaneyulu, A. S. R. (2004). Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale Roscoe (Ginger rhizome). Meat Science, 68, 363–369.

    Article  CAS  PubMed  Google Scholar 

  • NBDS. (2015). The national biotechnology development strategy (NBDS)-2015–2020. Department of Biotechnology. Ministry of Science & Technology, Government of India. http://pib.nic.in/newsite/PrintRelease.aspx?relid=134035

  • Newmark, P. A., Reddien, P. W., Cebria, F., & Alvarado, A. S. (2003). Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America, 100, 11861–11865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, J., & Tokuda, G. (2013). Ligno cellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31, 838–850.

    Article  CAS  PubMed  Google Scholar 

  • Noble, J. C., Diggle, P. J., & Whitford, W. G. (1989). The spatial distribution of termite pavements and hummock feeding sites on a semi-arid woodland in eastern Australia. Acta Oecologica/Oecologia Generalis, 10, 355–376.

    Google Scholar 

  • Nuss, A. B., Forschler, B. T., Crim, J. W., TeBrugge, V., Pohl, J., & Brown, M. R. (2010). Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes. Peptides, 31, 419–428.

    Article  CAS  PubMed  Google Scholar 

  • Nyamapfene, K. W. (1986). The use of termite mounds in Zimbabwe peasant agriculture. Tropical Agriculture, 63, 191–192.

    Google Scholar 

  • Ogino, H., Otsubo, T., & Ishikawa, H. (2008). Screening, purification, and characterization of a leather-degrading protease. Biochemical Engineering Journal, 38, 234–240.

    Article  CAS  Google Scholar 

  • Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.

    Google Scholar 

  • Okot-Kotber, B. M., Ujvary, I., Mollaaghahaba, R., Szurdoki, F., Matolcsy, G., & Prestwich, G. D. (1991). Physiological influence on fenoxycarb pro-insecticides and soldier head extracts of various termite species on soldier differentiation in Reticulitermes flavipes. Sociobiology, 19, 77–89.

    Google Scholar 

  • Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D., & DiNovi, M. J. (2006). Food-processing enzymes from recombinant microorganisms –a review. Regulatory Toxicology and Pharmacology, 45, 144–158.

    Article  CAS  PubMed  Google Scholar 

  • Oliviera, L. A., & Paiva, W. O. (1985). Use of termite nests and chicken manure as fertilizers for lettuce in red yellow podzolic soils of the Manaus region. Acta Amazonica, 15, 13–18.

    Article  Google Scholar 

  • Park, H. C., Majer, J. D., & Hobbs, R. J. (1994). Contribution of the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. Ecological Research, 9, 351–356.

    Article  Google Scholar 

  • Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., & Cairney, J. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Rajamohan, F., Lee, M. K., & Dean, D. H. (1998). Bacillus thuringiensis insecticidal proteins: Molecular mode of action. Progress in Nucleic Acid Research and Molecular Biology, 60, 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan, R., Suiter, D. R., Nakatsu, C. H., Humber, R. D., & Bennett, G. W. (1999). Imidacloprid-enhanced Reticulitermes flavipes susceptibility to the entomopathogen Metarhizium anisopliae. Journal of Economic Entomology, 92, 1125–1132.

    Article  CAS  Google Scholar 

  • Ramos-Elorduy, J. (2005). Insects: A hopeful food source. In M. G. Paoletti (Ed.), Ecological implications of minilivestock (pp. 263–291). Enfield: Science Publishers.

    Google Scholar 

  • Rath, A. C. (2000). The use of entomopathogenic fungi for control of termites. Biocontrol Science and Technology, 10, 563–581.

    Article  Google Scholar 

  • Raubenheimer, D., & Rothman, J. (2012). Nutritional ecology of entomophagy in humans and other primates. Annual Review of Entomology, 58, 141–160.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G. E. (1999). Integrative animal behavior and socio-genomics. Trends in Ecology & Evolution, 5, 202–205.

    Article  Google Scholar 

  • Robinson, G. E., Grozinger, C. M., & Whitfield, C. W. (2005). Socio-genomics: Social life in molecular terms. Nature Reviews Genetics, 6, 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A., & Bulmer, M. S. (2011). Ecology, behavior and evolution of disease resistance in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 165–191). Dordrecht: Springer.

    Google Scholar 

  • Salick, J., Herrerra, R., & Jordan, C. F. (1983). Termitaria, nutrient patchiness in nutrient-deficient rain forests. Biotropica, 15, 1–7.

    Article  Google Scholar 

  • Schaefer, D. A., & Whitford, W. G. (1981). Nutrient cycling by the subterranean termite Gnathamitermes tubiformans in a Chihuahuan desert ecosystem. Oecologia, 48, 277–283.

    Article  PubMed  Google Scholar 

  • Scharf, M. E. (2008). Silent pesticides. Chemistry and Industry Managemenet, 11, 20–23.

    Google Scholar 

  • Scharf, M. E. (2015). Termites as targets and models for biotechnology. Annual Review of Entomology, 60, 77–102.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, M. E., & Boucias, D. G. (2010). Potential of termite based biomass pre-treatment strategies for use in bioethanol production. Insect Science, 17, 166–174.

    Article  Google Scholar 

  • Scharf, M. E., & Tartar, A. (2008). Termite digestomes as sources for novel lignocellulases. Biofuels, Bioproducts and Biorefining, 2, 540–552.

    Article  CAS  Google Scholar 

  • Scharf, M. E., Ratliff, C. R., Hoteling, J. T., & Bennett, G. W. (2003). Caste differentiation responses of two sympatric Reticulitermes termite species to juvenile hormone homologs and synthetic juvenoids in two laboratory assays. Insectes Sociaux, 50, 346–354.

    Article  Google Scholar 

  • Scharf, M. E., Buckspan, C. E., Grzymala, T. L., & Zhou, X. (2007). Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. The Journal of Experimental Biology, 210, 4390–4398.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, M. E., Kovaleva, E. S., Jadhao, S., Campbell, J. H., Buchman, G. W., & Boucias, D. G. (2010). Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochemistry and Molecular Biology, 40, 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PloS One, 6, 21709.

    Article  CAS  Google Scholar 

  • Sen, R., Raychoudhury, R., Cai, Y., Sun, Y., Lietze, V. U., Boucias, D. G., & Scharf, M. E. (2013). Differential impacts of juvenile hormone, soldier head extract and alternate caste phenotypes on host and symbiont transcriptome composition in the gut of the termite Reticulitermes flavipes. BMC Genomics, 14, 491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi, A., Slack, J. M., Kovaleva, E. S., Buchman, G. W., & Scharf, M. E. (2013). Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochemistry and Molecular Biology, 43, 91–101.

    Article  CAS  PubMed  Google Scholar 

  • Shockley, M., & Dossey, A. T. (2014). Insects for human consumption. In J. Morales-Ramos, G. Rojas, & D. I. Shapiro-Ilan (Eds.), Mass production of beneficial organisms (pp. 617–652). New York: Academic.

    Chapter  Google Scholar 

  • Soares, C. A., Lima, C. M., Dolan, M. C., Piesman, J., Beard, C. B., & Zeidner, N. S. (2005). Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Molecular Biology, 14, 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Solavan, A., Paulmurugan, R., & Wilsanand, V. (2006). Effect of the subterranean termite used in the South Indian folk medicine. Indian Journal of Traditional Knowledge, 5, 376–379.

    Google Scholar 

  • Souza, P. M., & Magalhães, P. O. (2010). Application of microbial α-amylase in industry– a review. Brazilian Journal of Microbiology, 41, 850–861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, J. Z., & Scharf, M. E. (2010). Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17(3), 163–165.

    Article  Google Scholar 

  • Sun, Q., & Zhou, X. (2013). Corpse management in social insects. International Journal of Biological Sciences, 9, 313–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan, A., & Wong, N. (2013). Parameterization studies of solar chimneys in the tropics. Energies, 6, 145–163.

    Article  Google Scholar 

  • Tartar, A., Wheeler, M. M., Zhou, X., Coy, M. R., Boucias, D. G., & Scharf, M. E. (2009). Parallel meta transcriptome analyses of host and symbiont gene expression in the gut of the termite R. flavipes. Biotechnology for Biofuels, 2, 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarver, M. R., Zhou, X., & Scharf, M. E. (2010). Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Molecular Biology, 11, 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarver, M. R., Florane, C. B., Zhang, D., Grimm, C., & Lax, A. R. (2012). Methoprene and temperature effects on caste differentiation and protein composition in the Formosan subterranean termite, Coptotermes formosanus. Insect Sci., 12, 18.

    CAS  Google Scholar 

  • Tayasu, I., Abe, T., Eggleton, P., & Bignell, D. E. (1997). Nitrogen and carbon isotope ratios in termites: An indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology, 22, 343–351.

    Article  Google Scholar 

  • Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, 3636.

    Article  CAS  PubMed  Google Scholar 

  • Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.

    Article  CAS  PubMed  Google Scholar 

  • Toga, K., Hojo, M., Miura, T., & Maekawa, K. (2009). Presoldier induction by a juvenile hormone analog in the nasute termite Nasutitermes takasagoensis. Zoological Science, 26, 382–328.

    Article  PubMed  Google Scholar 

  • Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-beta-1,4-glucanase. Zoological Science, 14, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • USEPA. (2011). US Environmental Protection Agency: Policies concerning products containing nanoscale materials. Federal Register, 76, 2011–14943. EPA-HQ-OPP-2010-0197-0001.

    Google Scholar 

  • Van-Huis, H. (2003). Insects as food in Sub-Saharan Africa. Insect Science and its Application, 23, 163–185.

    Google Scholar 

  • Van-Huis, H. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583.

    Article  CAS  PubMed  Google Scholar 

  • Vargo, E. L., & Parman, V. (2012). Effect of fipronil on subterranean termite colonies in the field. Journal of Economic Entomology, 105, 523–532.

    Article  CAS  PubMed  Google Scholar 

  • Vasconcellos, A., & Moura, F. M. S. (2010). Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic Coastal Forest in northeastern Brazil. Journal of Insect Science, 10, 1–9.

    Article  Google Scholar 

  • Vaughn, T., Cavato, T., Brar, G., Coombe, T., Gooyer, D., Ford, S., Groth, M., Howe, A., Johnson, S., Kolacz, K., Pilcher, C., Purcell, J., Romano, C., English, L., & Pershing, J. (2005). A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Science, 45, 931–938.

    Article  CAS  Google Scholar 

  • Veivers, P. C., O’Brien, R. W., & Slaytor, M. (1982). Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing the entry of foreign bacteria. Journal of Insect Physiology, 28, 947–951.

    Article  Google Scholar 

  • Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration and Biodegradation, 63, 959–972.

    Article  CAS  Google Scholar 

  • Waller, D. A., & LaFage, J. P. (1986). Nutritional ecology of termites. In F. Slansky Jr. & J. G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders, and related invertebrates (pp. 487–532). New York: Wiley.

    Google Scholar 

  • Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, G. H., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N. C., Matson, E. G., Ottesen, E. A., Zhang, X., Hernández, M., Murillo, C., Acosta, L. G., Rigoutsos, I., Tamayo, G., Green, B. D., Chang, C., Rubin, E. M., Mathur, E. J., Robertson, D. E., Hugenholtz, P., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a woodfeeding higher termite. Nature, 450, 560–565.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., Noda, H., & Lo, N. A. (1998). A cellulase gene of termite origin. Nature, 394, 330–331.

    Article  CAS  PubMed  Google Scholar 

  • Watson, J. P. (1977). The use of mounds of the termite Macroter- rues falciger (Gerstacker) as a soil amendment. Journal of Soil Science, 28, 664–672.

    Article  CAS  Google Scholar 

  • Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343, 754–758.

    Article  CAS  PubMed  Google Scholar 

  • Wimmer, Z., Jurcek, O., Jedlicka, P., Hanus, R., & Kuldova, J. (2007). Insect pest management agents: Hormonogen esters (juvenogens). Journal of Agricultural and Food Chemistry, 55, 7387–7393.

    Article  CAS  PubMed  Google Scholar 

  • Wood, T. G., & Cowie, R. H. (1988). Assessment of on-farm losses in cereals in Africa due to soil insects. International Journal of Tropical Insect Science, 9, 709–716.

    Article  Google Scholar 

  • Zhang, D., Lax, A. R., Bland, J. M., Yu, J., Fedorova, N., & Nierman, W. C. (2010). Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Science, 17, 245–252.

    Article  CAS  Google Scholar 

  • Zhou, X., Oi, F. M., & Scharf, M. E. (2006). Social exploitation of hexamerin, RNAi reveals a major caste regulatory factor in termites. Proceedings of the National Academy of Sciences of the United States of America, 103, 4499–4504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008a). Inhibition of termite cellulases by carbohydrate-based cellulase inhibitors: Evidence from in vitro biochemistry and in vivo feeding studies. Pesticide Biochemistry and Physiology, 90, 31–41.

    Article  CAS  Google Scholar 

  • Zhou, X., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008b). RNA interference in the termite Reticulitermes flavipes by ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38, 805–815.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, T., Nabi, S., Humera, Q. (2018). Biotechnology: A Tool in Termite Management. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-68726-1_13

Download citation

Publish with us

Policies and ethics