Skip to main content
Log in

Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Structural materials containing silicon are produced in single celled organisms through to higher plants and animals. Hydrated amorphous silica is a colloidal mineral of infinite functionality that is formed into structures with microscopic and macroscopic form. Proteins and proteoglycans are suggested to play a critical role in the catalysis of silica polycondensation and in structure direction during the formation of these magnificent structures. This article extends knowledge on the effect of protein containing biosilica extracts from Equisetum telmateia on the kinetics of silica formation and structure regulation. Utilising potassium silicon catecholate as the source of soluble silicon, bioextracts obtained from plant silica by dissolution of the siliceous phase with aqueous HF following extensive acid digestion of the plant cell wall were found to modify the kinetic rate constants for the formation of small silicic acid oligomers under circumneutral pH conditions and to modify the solubility of silicic acid in solution. Addition of the bioextracts at ca. 1 wt% to the reaction medium reduced the sizes and range of sizes of the fundamental silica particles formed and led to the formation of crystalline polymorphs of silica under conditions of ca. neutral pH, room temperature and in the absence of multiply charged cations, conditions assumed to be relevant to the biological mineralization environment. The ability of biological organisms to regulate the formation of silica structures with prevention of crystallinity is discussed as are the implications of this study in terms of the generation of new materials with specific form and function for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A,B.
Fig. 6.
Fig. 7A–D.
Fig. 8A–D.
Fig. 9.
Fig. 10A,B.
Fig. 11A–D.

Similar content being viewed by others

References

  1. Voronkov MG (1993) In: Corey JY, Corey ER, Gaspar PP (eds) Silicon chemistry. Ellis Horwood Ltd, Chichester, pp 145–152

  2. Iler RK (1979) The chemistry of silica. Plenum Press, New York

  3. Hartmann WD (1981) In: Volcani BE, Simpson TL (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 453–493

  4. Garrone R, Simpson TL, Pottu-Boumendil J (1981) In: Volcani BE, Simpson TL (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 495–525

  5. Sangster AG, Parry DW (1981) In: Volcani BE, Simpson TL (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 383–407

  6. Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) Chem Soc Chem Commun 168

  7. Volcani BE (1978) In: Bendz G, Lindqvist I (eds) Biochemistry of silicon and related problems. Plenum Press, New York, pp 177–204

  8. Wetherbee R, Crawford S, Mulvaney P (2000) In: Bauerlein E (ed) Biomineralization from biology to biotechnology and medical application. Wiley-VCH, pp 189–206

  9. Perry CC, Keeling-Tucker T (2000) J Biol Inorg Chem 5:537

    Article  CAS  PubMed  Google Scholar 

  10. Frondel C (1962) The system of mineralogy of DANA, 7th edn, vol3. Wiley, New York

  11. Vrieling EG, Beelen TPM, van Santen RA, Gieskes WWC (1999) J Biotechnol 70:39

    Google Scholar 

  12. Monje PV, Baran EJ (2000) J Plant Physiol 157:457

    CAS  Google Scholar 

  13. Perry CC (1989) In: Mann S, Webb J, Williams RJP (eds) Biomineralisation, chemical and biological perspectives. VCH, New York, pp 223–256

  14. Mann S, Perry CC (1986) In: Evered D, O'Connor M (eds) Silicon biochemistry. CIBA Symposium 121, pp 40–58

  15. Borowitza MA, Volcani BE (1978) J Phycol 14:10

    Google Scholar 

  16. Schmid AMM, Schulz D (1979) Protoplasma 100:267

    Google Scholar 

  17. Perry CC, Moss EJ, Williams RJP (1990) Proc R Soc London B241:47

    Google Scholar 

  18. Frohlich F (1989) Terra Nova 1:267

    Google Scholar 

  19. Sada E, Kumazawa H, Koresawa E (1990) Chem Eng J 44:133

    Article  CAS  Google Scholar 

  20. Bogush GH, Zukoski CF (1990) J Colloid Interface Sci 142:1

    Google Scholar 

  21. Lewis DW, Willock DJ, Catlow CRA, Thomas JM, Hutchings GJ (1996) Nature 382:604

    CAS  Google Scholar 

  22. Kresge CT, Leowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    CAS  Google Scholar 

  23. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Ed 38:780

    Article  CAS  Google Scholar 

  24. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci USA 96:361

    Google Scholar 

  25. Kröger N, Deutzmann R, Sumper M (1999) Science 286:1129

    PubMed  Google Scholar 

  26. Swift DM, Wheeler AP (1992) J Phycol 28:202

    CAS  Google Scholar 

  27. Perry CC, Keeling-Tucker T (1998) J Chem Soc Chem Commun 2587

  28. Vrieling EG, Gieskes WWC, Beelen TPM (1999) J Phycol 35:548

    Article  CAS  Google Scholar 

  29. Kroger N, Deutzmann R, Sumper M (2001) J Biol Chem 276:26,066

    Google Scholar 

  30. Harrison CC (1996) Phytochemistry 41:37

    Article  CAS  PubMed  Google Scholar 

  31. Cornish-Bowden A (1983) Meth Enzymol 91:60

    CAS  PubMed  Google Scholar 

  32. Evans DF, Parr J, Coker EN (1990) Polyhedron 9:813

    Article  CAS  Google Scholar 

  33. Harrison CC, Loton N (1995) J Chem Soc Faraday Trans 91:4287

    CAS  Google Scholar 

  34. Miller JC, Miller JN (1993) In: Statistics for analytical chemistry. Ellis Horwood, Chichester, UK

  35. Perry CC, Fraser MA (1991) Phil Trans R Soc London B334:149

    Google Scholar 

  36. Rosenfeld Y, Hacohen E, Grunbaum E, Tenne R, Sloan J, Hutchison JL (1998) Nature 395:336

    Article  Google Scholar 

  37. Marsh RE, Corey RB, Pauling L (1955) Biochim Biophys Acta 16:1

    CAS  Google Scholar 

  38. Lobel KD, West JK, Hench LL (1996) J Mater Sci Lett 15:648

    CAS  Google Scholar 

  39. Hench LL (1994) In: Cheetham AK, Brinker CJ, Mecartney ML, Sanchez C (eds) Better ceramics through chemistry VI. Materials Research Society, Pittsburgh, pp 993–1004

  40. http://iona.cryst.bbk.ac.uk

  41. Hartwig BA, Hench LL (1972) J Biomed Mater Res 6:413

    CAS  PubMed  Google Scholar 

  42. West JK, Hench LL (1994) J Biomed Mater Res 28:625

    CAS  PubMed  Google Scholar 

  43. Kroger N, Sumper M (2000) In: Bauerlein E (ed) Biomineralization from biology to biotechnology and medical application. Wiley-VCH, pp 151–170

  44. Morse DE (1999) Trend Biotechnol 17:230

    Article  CAS  Google Scholar 

  45. Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Nature 403:289

    Google Scholar 

  46. Mizutani T, Nagase H, Fujiwara N, Ogoshi H (1998) Bull Chem Soc Jpn 71:2017

    CAS  Google Scholar 

Download references

Acknowledgements

Dr Derek Walton of Derby University is thanked for tangential flow purification, Anthony Willis of the MRC Immunochemistry Unit, University of Oxford for the amino acid analyses and Professor Mark Weller of Southampton University for the extended X-ray diffraction studies. Crosfield Chemicals are thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole C. Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, C.C., Keeling-Tucker, T. Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia . Colloid Polym Sci 281, 652–664 (2003). https://doi.org/10.1007/s00396-002-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-002-0816-7

Keywords

Navigation