Skip to main content

Importance of Glutathione in the Legume-Rhizobia Symbiosis

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Glutathione (GSH) is essential for the proper development of root nodules during the symbiotic association of legume and rhizobia. It is involved in the antioxidant defense, the detoxification of xenobiotics, and the tolerance to abiotic and biotic stresses. The high level of GSH in root nodules and the presence of an active ascorbate-glutathione (AsA-GSH) cycle suggest that GSH participates in the protection of the nitrogen-fixing process against reactive oxygen species (ROS) resulting from the active nodule metabolism. Glutathione-related enzymes also play a critical role in defense against ROS: (a) glutathione peroxidase (GPX) is a H2O2 scavenger that uses GSH as a reductant, (b) glutathione reductase (GR) reduces GSSG using NADPH as a source of reducing power and maintaining the GSH/GSSG ratio in cells, (c) glutathione-S-transferase (GST) catalyzes the nucleophilic conjugation of GSH with several electrophilic substrates, and (d) glutaredoxins (GRXs), small redox proteins from the thioredoxin (TRX) superfamily, use GSH as electron donor. In this chapter, the role of GSH and its related enzymes was analyzed in free-living rhizobia and in the symbiosis with the legumes as well as the responses to different abiotic stresses (acid pH, saline, drought, and heavy metals/metalloids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Ghozlan H, Ghanem K, Moawad H (2005) Behaviour of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World J Microbiol Biotechnol 21:1095–1101

    Article  CAS  Google Scholar 

  • Alesandrini F, Mathis R, Van de Sype G, Hérouart D, Puppo A (2003) Possible roles of a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 158:131–138

    Article  CAS  Google Scholar 

  • Alexander E, Pham D, Steck TR (1999) The viable but non-culturable condition is induced by copper in Agrobacteriuim Tumefaciens and Rhizobium leguminosarum. Appl Env Microbiol 65:3754–3756

    CAS  Google Scholar 

  • Allocati N, Federici L, Masulli M, Di Llio C (2008) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  CAS  Google Scholar 

  • Alloway BJ (2012) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils. Springer, Heidelberg, pp 15–50

    Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodule and roots of soybean plants. Funct Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil 284:187–194

    Article  CAS  Google Scholar 

  • Bamborough L, Cummings SP (2008) The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol Fertil Soils 45:273–280

    Article  CAS  Google Scholar 

  • Bartoli CG, Guaimet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou F, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal l-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081

    Article  CAS  Google Scholar 

  • Becana M, Klucas RV (1992) Transition metals in legume root nodules. Iron dependent free radical production increases during nodule senescence. PNAS 89:8958–8962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytologist 188:960–976D

    Google Scholar 

  • Bianucci E, Fabra A, Castro S (2008) Growth of Bradyrhizobium sp. SEMIA 6144 in response to methylglyoxal: role of glutathione. Curr Microbiol 56:371–375

    Article  CAS  PubMed  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2011) Cadmium accumulation and tolerance in Bradyrhizobium spp. (peanut microsymbionts). Curr Microbiol 62:96–100

    Article  CAS  PubMed  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2012a) Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts). Biometals 25:23–32

    Article  CAS  PubMed  Google Scholar 

  • Bianucci E, Sobrino-Plata J, Carpena-Ruiz R, Tordable MC, Fabra A, Hernández L, Castro S (2012b) Contribution of phytochelatins to cadmium tolerance in peanut plants. Metallomics 4:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Bianucci E, Fullana C, Furlan A, Castro S (2013a) Antioxidant defense system responses and role of nitrate reductase in the redox balance maintenance in Bradyrhizobium japonicum strains exposed to cadmium. Enzyme Microb Technol 53:345–350

    Google Scholar 

  • Bianucci E, Furlan A, Rivadeneira J, Sobrino-Plata J, Carpena-Ruiz R, Tordable MC, Fabra A, Hernández L, Castro S (2013b) Influence of cadmium on the symbiotic interaction established between peanut (Arachis hypogaea L.) and sensitive or tolerant bradyrhizobial strains. J Environ Manag 130:126–134

    Article  CAS  Google Scholar 

  • Bianucci E, Furlan A, Isaia A, Peralta JM, Hernández LE, Castro S (2016) Impact of arsenic in bradyrhizobia strains and in the symbiotic interaction with peanut plant. Biocell 40(1):113

    Google Scholar 

  • Bright J, Desikan R, Tancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Brookes PC, Mc Grath SP (1984) Effect of metal toxicity on the size of the soil microbial biomass. Eur J Soil Sci 10:1365–2389

    Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Cárpena R, Esteban E, Lucena JJ, Peñalosa S, Vázquez P, Zornoza P, Gárate A (2006) Simbiosis y fitorrecuperación de suelos. In: Bedmar EJ, González J, Lluch C, Rodelas MB (eds) Fijación de Nitrógeno: Fundamentos y Aplicaciones. Granada, España, pp 255–268

    Google Scholar 

  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Article  Google Scholar 

  • Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Pérez-Rontomé C, Navascués J, Gay M, Becana M (2012) Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. J Exp Bot 63:3923–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coba de la Peña T, Redondo FJ, Manrique E, Lucas MM, Pueyo JJ (2010) Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnol J 8:954–965

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62:241–255

    Article  CAS  Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E, Van den Bosch K (1995) Transient induction of a peroxidase gene in Medicago trunculata precedes infection by Rhizobium meliloti. Plant Cell 7:43–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corticeiro SC, Lima AI, Figueira EM (2006) The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure. Enzym Microb Technol 40:132–137

    Article  CAS  Google Scholar 

  • Corticeiro S, Freitas R, Figueira E (2013) The role of GSTs in the tolerance of Rhizobium leguminosarum to cadmium. Biometals 26:879–886

    Article  CAS  PubMed  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. PNAS 83:3811–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Langeberg L, Treneman N (1993) Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87:365–370

    Article  CAS  Google Scholar 

  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol 150:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) ‘In situ’ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, Hérouart D, Frendo P (2011) Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol 192:496–506

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Dear B, O’Connor G (1990) Influence of an acid soil on the herbage yield and nodulation of five annual pasture legumes. Aust J Exp Agric 30:55–60

    Article  CAS  Google Scholar 

  • Evans PJ, Gallesi D, Mathieu C, Hernández MJ, de Felipe N, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79

    Article  CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    Article  CAS  Google Scholar 

  • Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A (1999) Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J 17:215–219

    Article  CAS  Google Scholar 

  • Frendo P, Hernández-Jiménez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Hérouart D, Puppo A (2001) A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol 126:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frendo P, Harrison J, Norman C, Hernández-Jiménez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant-Microbe Interact 18:254–259

    Article  CAS  PubMed  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. PNAS 103:1988–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlan A, Llanes A, Luna V, Castro S (2012) Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. ISRN Agron. https://doi.org/10.5402/2012/318083

  • Furlan A, Llanes A, Luna V, Castro S (2013) Abscisic acid mediates hydrogen peroxide production in peanut induced by water stress. Biol Plant 57:555–558

    Article  CAS  Google Scholar 

  • Furlan A, Bianucci E, Tordable MC, Castro S, Dietz K (2014) Antioxidant enzyme activities and gene expression patterns in peanut nodules during a drought and rehydration cycle. Funct Plant Biol 41:704–713

    Article  CAS  Google Scholar 

  • Furlan A, Bianucci E, Tordable MC, Kleinert A, Valentine A, Castro S (2016) Dynamic responses of photosynthesis and antioxidant system during a drought and rehydration cycle in peanut plants. Funct Plant Biol 43:337–345

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agriculture soils – a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Sagasti MT, Marino D (2015) PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation? Front Plant Sci 6:81

    PubMed  PubMed Central  Google Scholar 

  • Graham P (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Gratão P, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Groten K, Vanacker H, Dutilleul C, Bastian F, Bernard S, Carzaniga R, Foyer CH (2005) The roles of redox processes in pea nodule development and senescence. Plant Cell Environ 28:1293–1304

    Article  CAS  Google Scholar 

  • Günther C, Schlereth A, Udvardi M, Ott T (2007) Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicas. MPMI 20:1596–1603

    Google Scholar 

  • Harrison J, Jamet A, Muglia CI, Van de Sype G, Aguilar OM, Puppo A, Frendo P (2005) Glutathione plays a functional role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chem 66:1670–1676

    CAS  Google Scholar 

  • Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • International Agency of Reasearch on Cancer (IARC) (2016). On line: www.iarc.fr

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jubany-Mari T, Alegre-Batlle L, Jiang K, Feldman LJ (2010) Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Lett 584:889–897

    Article  CAS  PubMed  Google Scholar 

  • Krylova VV, Dubrovo NP, Izmailov SF (2007) The effect of metabolites on the pH gradient and membrane potential of the bean peribacteroid membrane. Appl Biochem Microbiol 43:292–297

    Article  CAS  Google Scholar 

  • Liao M, Luo YK, Zhao X, Huang CY (2005) Toxicity of cadmium to soil microbial biomass and its activity: effect of incubation time on Cd ecological dose in a paddy soil. J Zhejiang Univ Sci B 6:324–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira EMAP (2006) Glutathione- mediated cadmium sequestration in Rhizobium leguminosarum. Enzym Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  • Long SR (2001) Genes and signals in the Rhizobium-legume symbiosis. Plant Physiol 125:69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    Article  CAS  PubMed  Google Scholar 

  • Mann SS, Rate AW, Gilkes RJ (2002) Cadmium accumulation in agricultural soils in Western Australia. Water Air Soil Pollut 141:281–297

    Article  CAS  Google Scholar 

  • Marino D, Gonzalez EM, Arrese-Igor C (2006) Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses. J Exp Bot 57:665–673

    Article  CAS  PubMed  Google Scholar 

  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, González EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143:1968–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez-Garcia B, Shaw D, Cooper JW, Karpinska B, Dorcas Quain M, Makgopa EM, Kunert K, Foyer CH (2015) Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max). Ann Bot 116:495–510

    Article  Google Scholar 

  • Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matamoros MA, Dalton DA, Clemente MR, Rubio MC, Ramos J, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:1–11

    Article  CAS  Google Scholar 

  • Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M (2015) Function of glutathione peroxidases in legume root nodules. J Exp Bot 66:2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126:382–397

    Article  CAS  Google Scholar 

  • Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 307:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione Ann Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JL (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat Y, Saindrenan P, Issakidis-Bourguet E, Gouia H, Renou JP, Noctor G (2010) Arabidopsis glutathione reductase 1 is essential for the metabolism of intracellular H2O2 and to enable appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legumes nodules. Cloning, expression, and subcellular localization. Plant Physiol 124:879–888

    Article  Google Scholar 

  • Muglia CI, Grasso DH, Aguilar OM (2007) Rhizobium tropici response to acidity involves activation of glutathione synthesis. Microbiology 153:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Muglia C, Comai G, Spegazzini E, Riccillo PM, Aguilar OM (2008) Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules. FEMS Microbiol Lett 286:191–198

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Wiemken A, Boller T (2001) Redifferentiation of bacteria isolated from Lotus japonicus root nodules colonized by Rhizobium sp. NGR234. J Exp Bot 2:2181–2186

    Article  Google Scholar 

  • Munns D (1986) Acid soil tolerance in legumes and rhizobia. Adv Plant Nutr 2:63–91

    CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Google Scholar 

  • Naya L, Ladrera R, Ramos J, Gonzáez EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  CAS  PubMed  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS, Maheshwari DK (2007) Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World J 5:27–32

    Google Scholar 

  • Ponsone L, Fabra A, Castro S (2004) Interactive effects of acidity and aluminium on the growth, lipopolysaccharide and glutathione contents in two nodulating peanut rhizobia. Symbiosis 36:193–204

    CAS  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Pucciariello C, Innocenti G, Van de Velde W, Lambert A, Hopkins J, Clément M, Ponchet M, Pauly N, Goormachtig S, Holsters M, Puppo A, Frendo P (2009) (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti. Plant Physiol 151:1186–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos J, Naya L, Gay M, Abian J, Becana M (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiol 148:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauser WE, Meuwly P (1995) Retention of cadmium in roots of maize seedlings. Role of complexation by phytochelatins and related thiol peptides. Plant Physiol 109:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichman SM (2007) The potential use of legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    Article  CAS  Google Scholar 

  • Ricillo PM, Muglia CI, Bruijn F, Roe AJ, Booth IR, Aguilar OM (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753

    Article  Google Scholar 

  • Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M (2009) Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181:851–859

    Article  CAS  PubMed  Google Scholar 

  • Schröder P, Lyubenova L, Huber C (2009) Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Environ Sci Pollut Res 16:795–804

    Article  CAS  Google Scholar 

  • Sengupta D, Ramesh G, Mudalkar S, Kumar KRR, Kirti PB, Reddy AR (2012) Molecular cloning and characterization of γ-Glutamyl cysteine Synthetase (VrγECS) from roots of Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Plant Mol Biol Report 30:894–903

    Article  CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulator and bioremediation. Biol Plant 51:618–634

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shvaleva A, Coba T, Peña D, Rincón A, Lucas MM, Pueyo JJ (2010) Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. Plant Soil 326:109–121

    Article  CAS  Google Scholar 

  • Sobolev D, Begonia MFT (2008) Effects of heavy metal contamination upon soil microbes: lead- induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrevals L, Müller P, Fabra A, Castro S (2006) Role of glutathione in growth and symbiotic properties of Bradyrhizobium sp (peanut microsymbiont) under different environmental stresses. Can J Microbiol 52:606–616

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremedia- tion system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  CAS  PubMed  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  PubMed  PubMed Central  Google Scholar 

  • Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Wiel C, Scheres B, Franssen H, Van Lierop MJ, Van Lammeren A, Van Kammen A, Bisseling T (1990) The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9:1–7

    PubMed  PubMed Central  Google Scholar 

  • Vance CP (2008) Carbon and nitrogen metabolism in legumes nodules. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 293–320

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, van Montagu M, Inzé D et al. (2000) The ROOT MERISTEM LESS1⁄CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    Google Scholar 

  • Wang Y, Zhang Z, Pan Zhang P, Cao Y, Hu T, Yan (2016) Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402:247–261

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2006) An evaluation of the effects of heavy metals on the growth, seed yield and grain protein of lentil in pots. Ann Appl Biol 27:23–24

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  PubMed  Google Scholar 

  • Wingate VP, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2010) Online: www.who.int

  • Younis M (2007) Response of lablab perpureus–rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3:111–122

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants – a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits AH, Jouarin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    Article  CAS  Google Scholar 

  • Ziemacki G, Viviano G, Merli F (1989) Heavy metals: sources and environmental presence. Ann Ist Super Sanita 25:531–536

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Ministerio de Ciencia y Tecnología Córdoba. E. Bianucci and A. Furlan are members of the research career from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianucci, E., Furlan, A., Castro, S. (2017). Importance of Glutathione in the Legume-Rhizobia Symbiosis. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_17

Download citation

Publish with us

Policies and ethics