Skip to main content
Log in

Desiccation tolerant plants as model systems to study redox regulation of protein thiols

  • SI Plant Desiccation Stress
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

While the majority of plants and animals succumb to water loss, desiccation tolerant organisms can lose almost all of their intracellular water and revive upon rehydration. Only about 300 ‘resurrection’ angiosperms and very few animals are desiccation tolerant. By contrast, many bryophytes and most lichens are desiccation tolerant and so are the seeds and pollen grains of most flowering plants. The current literature reveals that the extreme fluctuations in water content experienced by desiccation tolerant organisms are accompanied by equally extreme changes in cellular redox state. Strongly oxidizing conditions upon desiccation can cause irreversible oxidation of free cysteine residues of proteins, which can change protein structure and function, and contribute to protein denaturation. It appears likely that reversible formation of disulphide bonds, in particular through protein glutathionylation, contributes to the set of protection mechanisms that confer desiccation tolerance. Upon rehydration, de-glutathionylation can be catalyzed by glutaredoxins (GRXs) and protein disulphide bonds can be reduced through NADPH-dependent thioredoxins (TRXs). Due to their ability to survive severe oxidative stress, desiccation tolerant plants and seeds are excellent models to study protein redox regulation, which may provide tools for enhancing tolerance to drought and more generally, to oxidative stress, in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aalen RB (1999) Peroxiredoxin antioxidants in seed physiology. Seed Sci Res 9:285–295

    Article  CAS  Google Scholar 

  • Alkhalfioui F, Renard M, Vensel WH, Wong J, Tanaka CK, Hurkman WJ, Buchanan BB, Montrichard F (2007) Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol 144:1559–1579

    Article  PubMed  CAS  Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Bot 209:1575–1584

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F, Corbineau F, Come D (2001) Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot 52:701–708

    PubMed  CAS  Google Scholar 

  • Beckett RP, Minibayeva FV, Lüthje S, Böttger M (2004) Reactive oxygen species metabolism in desiccation-stressed thalli of the liverwort Dumortiera hirsuta. Physiol Plant 122:3–10

    Article  CAS  Google Scholar 

  • Berjak P, Pammenter NW (2008) From Avicennia to Zizania: Seed recalcitrance in perspective. Annal Bot 101:213–228

    Article  Google Scholar 

  • Black M, Pritchard HW (2002) Desiccation and survival in plants: drying without dying. CAB International, Wallingford

    Book  Google Scholar 

  • Broin M, Rey P (2003) Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-Cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol 132:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiol 48:215–228

    Article  CAS  Google Scholar 

  • Butt AD, Ohlrogge JB (1991) Acyl carrier protein is conjugated to glutathione in spinach seed. Plant Physiol 96:937–942

    Article  PubMed  CAS  Google Scholar 

  • Cazalis R, Pulido P, Aussenac T, Perez-Ruiz JM, Cejudo FJ (2006) Cloning and expression of three thioredoxin h isoforms from wheat showing differential expression in seeds. J Exp Bot 57:2165–2172

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD (2006) AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 281:26280–26288

    Article  PubMed  CAS  Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Bio Med 43:883–898

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96

    Article  PubMed  CAS  Google Scholar 

  • De Gara L, de Pinto MC, Moliterni VMC, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258

    Article  PubMed  Google Scholar 

  • De Tullio MC, Arrigoni O (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13:249–260

    Article  CAS  Google Scholar 

  • Dhindsa R (1987) Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol 83:816–819

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa R (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury and protein synthesis in Tortula ruralis. Plant Physiol 95:648–651

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ (2008) Redox signal integration: from stimulus to networks and genes. Physiol Plant 133:459–468

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Jacob S, Oelze M, Laxa M, Tognetti V, Nunes de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos CV, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334

    Article  CAS  Google Scholar 

  • Fahey RC, Brody S, Mikolajczyk SD (1975) Changes in the glutathione thiol-disulphide status of Neurospora crassa conidia during germination and aging. J Bacteriol 135:144–151

    Google Scholar 

  • Fahey RC, Di Stefano DL, Meier GP, Bryan RN (1980) Role of hydration state and thiol-disulfide status in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiol 65:1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315:387–389

    Article  PubMed  CAS  Google Scholar 

  • Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I (2004) S-Glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8:201–212

    Article  PubMed  CAS  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Hansen RE, Roth D, Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci 106:422–427

    Article  PubMed  Google Scholar 

  • Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB (2003) Seed 1-Cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. Plant Physiol 133:1148–1157

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Illing N, Denby KJ, Collett H, Shen A, Farrant JM (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    Article  CAS  Google Scholar 

  • Jacquot J, Eklund H, Rouhier N, Schurmann P (2009) Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14:336–343

    Article  PubMed  CAS  Google Scholar 

  • Jenks M, Wood A (2007) Plant desiccation tolerance. Iowa, Iowa State University Press

    Book  Google Scholar 

  • Jiang G, Wang Z, Shang H, Yang W, Hu Z, Phillips J, Deng X (2007) Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225:1405–1420

    Article  PubMed  CAS  Google Scholar 

  • Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921–937

    Article  PubMed  CAS  Google Scholar 

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302–304

    Article  PubMed  CAS  Google Scholar 

  • Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88:829–832

    Article  PubMed  CAS  Google Scholar 

  • Kranner I (2002) Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol 154:451–460

    Article  CAS  Google Scholar 

  • Kranner I, Birtic S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    Article  CAS  Google Scholar 

  • Kranner I, Grill D (1993) Content of low-molecular-weight thiols during imbibition of pea seeds. Physiol Plant 88:557–562

    Article  CAS  Google Scholar 

  • Kranner I, Grill D (1996) Significance of thiol-disulfide exchange in resting stages of plant development. Bot Acta 109:8–14

    CAS  Google Scholar 

  • Kranner I, Grill D (1997) Desiccation and the subsequent recovery of cryptogamics that are resistant to drought. Phyton 37 Special issue Oxygen. Free radic environ stress plants 37:139–150

    CAS  Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death? Free Radic Bio Med 40:2155–2165

    Article  CAS  Google Scholar 

  • Kranner I, Beckett RP, Hochman A, Nash T III (2008) Desiccation tolerance in lichens: a review. Bryologist 111:576–593

    Article  Google Scholar 

  • Kranner I, Roach BeckettRP, Whitaker C, Minibayeva FV (2010) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physioly 167(10):805–811. doi:10.1016/j.jplph.2010.01.019

    Article  CAS  Google Scholar 

  • Leprince O, Harren FJM, Buitink J, Alberda M, Hoekstra FA (2000) Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles. Plant Physiol 122:597–608

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang Z, Wang L, Wu R, Phillips J, Deng X (2009) LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci 176:90–98

    Article  CAS  Google Scholar 

  • Meyer AJ, Rüdiger H (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  PubMed  CAS  Google Scholar 

  • Minibayeva F, Beckett RP (2001) High rates of extracellular superoxide production in bryophytes and lichens, and an oxidative burst in response to rehydration following desiccation. New Phytol 152:333–341

    Article  CAS  Google Scholar 

  • Mittler R (2004) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  Google Scholar 

  • Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci 14:110–117

    Article  PubMed  CAS  Google Scholar 

  • Mowla SB, Thomson JA, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726

    Article  PubMed  CAS  Google Scholar 

  • Murthy UMN, Kumar PP, Sun WQ (2003) Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolyisis, Maillard reactions and their relationship to glass state transition. J Exp Bot 54:1057–1067

    Article  PubMed  CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Rascio N, Vazzana C, Sgherri CLM (2000) Protein dynamics in thylakoids of the desiccation-tolerant plant Boea hygroscopica during dehydration and rehydration. Plant Physiol 124:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot J, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Onda Y, Kumamaru T, Kawagoe Y (2009) ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm. Proc Natl Acad Sci 106:14156–14161

    Article  PubMed  Google Scholar 

  • Paulsen CE, Carroll KS (2010) Orchestrating redox signalling networks through regulatory cyteine switches. ACS Chem Biol 5:47–62

    Article  PubMed  CAS  Google Scholar 

  • Peltoniemi MJ, Karala A, Jurvansuu JK, Kinnula VL, Ruddock LW (2006) Insights into deglutathionylation reactions—different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the γ-linkage present in glutathione. J Biol Chem 281:33107–33114

    Article  PubMed  CAS  Google Scholar 

  • Potts M, Slaughter SM, Hunneke FU, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: Application of principles to human cells. Integr Comp Biol 45:800–809

    Article  CAS  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Pukacka S, Ratajczak E (2006) Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J Plant Physiol 163:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Pukacka S, Ratajczak E (2007) Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Funct Plant Biol 34:601–613

    Article  CAS  Google Scholar 

  • Rhazi L, Cazalis R, Lemelin E, Aussenac T (2003) Changes in the thiol-disulfide status during wheat grain development. Plant Physiol Biochem 41:895–902

    Article  CAS  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    Article  PubMed  CAS  Google Scholar 

  • Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen HY, Bailly C, Kranner I (2010) Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ 33:59–75

    PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  PubMed  CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Bio Med 30:1191–1212

    Article  CAS  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Seel WE, Hendry GAF, Lee JA (1992) Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. J Ex Bot 43:1031–1037

    Article  CAS  Google Scholar 

  • Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392–399

    Article  PubMed  CAS  Google Scholar 

  • Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827

    Article  PubMed  CAS  Google Scholar 

  • Shahpiri A, Svensson B, Finnie C (2008) The NADPH-dependent thioredoxin reductase/thioredoxin system in germinating barley seeds: gene expression, protein profiles, and interactions between isoforms of thioredoxin h and thioredoxin reductase. Plant Physiol 146:789–799

    Article  PubMed  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Stacy RAP, Nordeng TW, Culianez-Macia FA, Aalen RB (1999) The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J 19:1–8

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Tommasi F, Paciolla C, Arrigoni O (1999) The ascorbate system in recalcitrant and orthodox seeds. Physiol Plant 105:193–198

    Article  CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Ex Bot 52:1647–1654

    CAS  Google Scholar 

  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol 137:317–327

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750

    Article  PubMed  Google Scholar 

  • Wettlaufer SH, Leopold AC (1991) Relevance of Amadori and Maillard products to seed deterioration. Plant Physiol 97:165–169

    Article  PubMed  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2003) Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett 547:151–156

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochem 65:1629–1640

    Article  CAS  Google Scholar 

  • Woo HA, Jeong W, Chang T, Park KJ, Park SJ, Yang JS, Rhee SG (2005) Sulfiredoxin is specific to 2-Cys peroxiredoxins. J Biol Chem 280:3125–3128

    Article  PubMed  CAS  Google Scholar 

  • Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA (2007) Thiol oxidation in signalling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic Biol Med 43:1099–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Royal Botanic Gardens, Kew receive grant-in-aid from Defra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse Kranner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colville, L., Kranner, I. Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62, 241–255 (2010). https://doi.org/10.1007/s10725-010-9482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9482-9

Keywords

Navigation