Skip to main content
Log in

Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts)

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In this study, the effects of cadmium (Cd) on cell morphology and antioxidant enzyme activities as well as the distribution of the metal in different cell compartments in Bradyrhizobium sp. strains were investigated. These strains were previously classified as sensitive (Bradyrhizobium sp. SEMIA 6144) and tolerant (Bradyrhizobium sp. NLH25) to Cd. Transmission electron micrographs showed large electron-translucent inclusions in the sensitive strain and electron-dense bodies in the tolerant strain, when exposed to Cd. Analysis of Cd distribution revealed that it was mainly bounded to cell wall in both strains. Antioxidant enzyme activities were significantly different in each strain. Only the tolerant strain was able to maintain a glutathione/oxidized glutathione (GSH/GSSG) ratio by an increase of GSH reductase (GR) and GSH peroxidase (GPX) enzyme activities. GSH S-transferase (GST) and catalase (CAT) activities were drastically inhibited in both strains while superoxide dismutase (SOD) showed a significant decrease only in the sensitive strain. In conclusion, our findings suggest that GSH content and its related enzymes are involved in the Bradyrhizobium sp. tolerance to Cd contributing to the cellular redox balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAT:

Catalase

Cd:

Cadmium

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Allocati N, Federici L, Masulli M, Di llio C (2008) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  Google Scholar 

  • Bååth E, Díaz-Ravina M, Frostegård Å, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microb 64:238–245

    Google Scholar 

  • Beauchamp C, Fridovich I (1973) Isoenzymes of SOD from wheat germ. Biochim Biophys Acta 317:50–54

    PubMed  CAS  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2008) Growth of Bradyrhizobium sp. SEMIA 6144 in response to methylglyoxal: role of glutathione. Curr Microbiol 56:371–375

    Article  PubMed  CAS  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2011) Cadmium accumulation and tolerance in Bradyrhizobium spp (peanut microsymbionts). Curr Microbiol 62:96–100

    Article  PubMed  CAS  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    CAS  Google Scholar 

  • Bradford M (1976) A rapid sensitive method for the quantification the microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–276

    Article  PubMed  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  PubMed  CAS  Google Scholar 

  • Bučková M, Godočíková J, Zámocký M, Polek B (2010) Screening of bacterial isolates from polluted soils exhibiting catalase and peroxidase activity and diversity of their responses to oxidative stress. Curr Microbiol 61:241–247

    Article  PubMed  Google Scholar 

  • Cabiscol E, Tamatir J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    PubMed  CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Cooper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C, Espino-Saldaña AE, Acevedo-Aguilar F, León-Rodríguez IL, Rivera-Cano ME, Avila-Rodríguez M, Wróbel-Kaczmarczyk K, Wróbel-Zasada K, Gutiérrez-Corona JF, Rodríguez-Zavala JS, Moreno-Sánchez R (2006) Interacciones microbianas con metales pesados. Rev Latinoam Microbiol 2:203–210

    Google Scholar 

  • Cevallos MA, Encarnación S, Leija A, Mora Y, Mora J (1996) Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol 178:1646–1654

    PubMed  CAS  Google Scholar 

  • Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Biochem 275:26556–26565

    CAS  Google Scholar 

  • Corticeiro SC, Lima AI, Figueira EM (2006) The importance of glutathione in oxidative status of Rhizobium lemuniosarum biovar viciae under Cd exposure. Enzym Microbial Technol 40:132–137

    Article  CAS  Google Scholar 

  • Cyrne L, Martins L, Fernandes L, Marinho HS (2003) Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Rad Biol Med 34:385–393

    Article  PubMed  CAS  Google Scholar 

  • Dazzo FB, Truchet GL, Sherwood JE, Hrabak EM, Abe M, Pankratz SH (1984) Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbiol 48:1140–1150

    PubMed  CAS  Google Scholar 

  • De Acevedo F (2003) Toxicología do Mercúrio. RiMa, Sao Paulo, p 292

  • Fabra A, Castro S, Taurian T, Angelini J, Ibañez F, Dardanelli M, Tonelli M, Bianucci E, Valetti L (2010) Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known? Crit Rev Microbiol 3:179–194

    Article  Google Scholar 

  • Flohe L, Gunzler W (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Grant CM, Perrone G, Dawes IW (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253:893–898

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997)  Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    PubMed  CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  PubMed  CAS  Google Scholar 

  • Jurado S, Sarmiento P, Faisal F, Igal S (2007) El microscopio electrónico de transmisión: Generalidades y aplicaciones. In: Manual de Microscopia Electrónica de Transmisión y Barrido: técnicas básicas para el procesamiento de especímenes biológicos, pp 6–20

  • Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil microorganisms and their activities. Appl Soil Ecol 20:145–155

    Article  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    Article  CAS  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira EMAP (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  PubMed  CAS  Google Scholar 

  • Nieboer E, Fletcher GG (1996) In: Chang LW, Magos L, Suzuki T (eds) Toxicology of metals: determinants of reactivity in metal toxicology. CRC Press, Boca Raton, pp 113–132

    Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27:17–28

    Article  PubMed  CAS  Google Scholar 

  • Pacheco CC, Passos JF, Castro AR, Moradas-Ferreira P, Paolo DeMarco (2008) Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Arch Microbiol 189:271–278

    Article  PubMed  CAS  Google Scholar 

  • Perito B, Allocati N, Casalone E, Masulli M, Dragani B, Polsinelli M, Aceto A, Di Ilio C (1996) Molecular cloning and overexpression of a glutathione transferase gene from Proteus mirabilis. Biochem J 318:157–162

    PubMed  CAS  Google Scholar 

  • Piccolomini R, Di Ilio C, Aceto A, Allocati N, Faraone A, Cellini L, Ravagnan G, Federici G (1989) Glutathione transferase in bacteria: subunit composition and antigenic characterization. J Gen Microbiol 135:3119–3125

    PubMed  CAS  Google Scholar 

  • Purchase D, Miles RJ, Young TWK (1997) Cadmium uptake and nitrogen fixing ability in heavy-metal-resistant laboratory and field strains of Rhizobium leguminosarum biovar trifolii. FEMS Microbiol Ecol 22:85–93

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sheadle M, Bassham J (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  Google Scholar 

  • Sies H (1990) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  PubMed  CAS  Google Scholar 

  • Siñeriz Louis M, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49:1–8

    Article  Google Scholar 

  • Sobrevals L, Müller P, Fabra A, Castro S (2006) Role of glutathione in growth of Bradyrhizobium sp. (peanut microsymbiont) under different environmental stresses and in symbiosis with the host plant. Can J Microbiol 52:609–616

    Article  PubMed  CAS  Google Scholar 

  • Stainer R, Ingraham J, Wheelis M, Painler P (1992) Microbiología. 2nd edn. Reverte, Barcelona, pp 188–191

    Google Scholar 

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576

    Article  PubMed  CAS  Google Scholar 

  • Stochs SJ, Bagchi D (1995) Oxidative mechanism in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  Google Scholar 

  • Taurian T, Aguilar OM, Fabra A (2002) Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. Symbiosis 33:59–72

    CAS  Google Scholar 

  • Todorova T, Vuilleumier A, Kujumdzieva A (2007) Role of glutathione S-transferases and glutathione in arsenic and peroxide resistance in Saccharomyces cerevisiae: a reverse genetic analysis approach. Biotechnol Biotechnol Equip 21(3):348–352

    CAS  Google Scholar 

  • Trautwein K, Kuhner S, Wohlbrand L, Halder T, Kuchta K, Steinbuchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microb 74:2267–2274

    Article  CAS  Google Scholar 

  • Turner RJ, Aharonowitz Y, Weiner J, Taylor DE (2001) Glutathione is a target of tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47:33–40

    PubMed  CAS  Google Scholar 

  • Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Biochem 276:8469–8474

    CAS  Google Scholar 

  • Vincent J (1970) A manual for the practical study of root nodule bacteria. In: International biological programme. Handbook No. 15. Blackwell Scientific Publication, Oxford

  • Vuilleumier S (1997) Bacterial glutathione s-transferases: what are they good for? J Bacteriol 179:1431–1441

    PubMed  CAS  Google Scholar 

  • Yang F, Lin L (1998) Cytostructure, lipopolysaccharide, and cell proteins analysis from Rhizobium fredii. Bot Bull Acad Sin 39:261–267

    CAS  Google Scholar 

  • Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2007) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Ecol 53:1–71

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. E. Bianucci has a doctoral fellowship from CONICET- MINCYT (Córdoba). A. Fabra is member of research career of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Castro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianucci, E., Fabra, A. & Castro, S. Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts). Biometals 25, 23–32 (2012). https://doi.org/10.1007/s10534-011-9480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9480-z

Keywords

Navigation