Skip to main content

Phylloplane Yeasts in Temperate Climates

  • Chapter
  • First Online:
Yeasts in Natural Ecosystems: Diversity

Abstract

Yeasts are integral parts of phylloplane communities of temperate regions, where ecosystems are not only influenced by short-term fluctuations in abiotic conditions, but additionally by cyclic seasonal changes. Phylloplane yeasts possess physiological adaptations, such as pigmentation and extracellular polysaccharides that enable them to resist harsh conditions encountered in these environments. Additionally, through production of plant hormone-like metabolites, they also might influence the behavior, fitness, and growth of their plant host. Here we review how the understanding of yeasts in this environment has improved in the last years due to discoveries in new habitats, new developments in taxonomy, but also the application of environmental sequencing and genomics. These new technologies, as well as traditional approaches, have made it clear that yeasts are not only occupying this environment to gain nutrients, but they are active participants that shape the structure of microbial communities by diverse interactions with other community members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreadis SS, Witzgall P, Becher PG (2015) Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. Front Ecol Evol 3:121

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Babjeva IP, Reshetova I (1998) Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–6

    Google Scholar 

  • Babjeva IP, Kartintseva AA, Maksimova IA, Chernov IY (1999) Yeasts in the spruce forests of the Central Forest Reserve. Vestn Mosk Univ Ser Pochvoved 4:45–49

    Google Scholar 

  • Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt I (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One 8:e53987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bálint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, Robertson AL, Tiffin P, Schmitt I (2015) Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol 24:235–248

    Article  PubMed  CAS  Google Scholar 

  • Barda O, Shalev O, Alster S, Buxdorf K, Gafni A, Levy M (2014) Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Dis 99:621–626

    Article  CAS  Google Scholar 

  • Begerow D, Kemler M, Feige A, Yurkov AM (2017) Parasitism in yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 179–210

    Google Scholar 

  • Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CT, Sampaio JP, Gonçalves P, Libkind D (2016) Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics 17:901

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Hung R, Lee S, Padhi S (2012) Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. In: Hock B (ed) Fungal associations. Springer, Berlin, pp 373–393

    Chapter  Google Scholar 

  • Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594

    Article  CAS  PubMed  Google Scholar 

  • Brandão LR, Libkind D, Vaz ABM, Espírito Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  PubMed  CAS  Google Scholar 

  • Buxdorf K, Rahat I, Gafni A, Levy M (2013) The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiol 161:2014–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Cabral D, Stone JK, Carroll GC (1993) The internal mycobiota of Juncus spp.: microscopic and cultural observations of infection patterns. Mycol Res 97:367–376

    Article  Google Scholar 

  • Chernov IY, Glushakova AM, Kachalkin AV (2013) Annotated list of yeasts from Moscow region. Mikol Fitopatol 47:103–115

    Google Scholar 

  • Cissé OH, Almeida JM, Fonseca A, Kumar AA, Salojärvi J, Overmyer K, Hauser PM, Pagni M (2013) Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. MBio 4:e00055-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coelho MA, Gonçalves P, Sampaio JP (2011) Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes. BMC Evol Biol 11:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Combet E, Eastwood DC, Burton KS, Henderson J (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    Article  CAS  Google Scholar 

  • Cordero RJB, Casadevall A (2017) Functions of fungal melanin beyond virulence. Fungal Biol Rev 31(2):99–112

    Article  Google Scholar 

  • Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C (2012a) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520

    Article  Google Scholar 

  • Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012b) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:510–519

    Article  PubMed  Google Scholar 

  • Davis TS, Boundy-Mills K, Landolt PJ (2012) Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb Ecol 64:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • Davydenko K, Vasaitis R, Stenlid J, Menkis A (2013) Fungi in foliage and shoots of Fraxinus excelsior in eastern Ukraine: a first report on Hymenoscyphus pseudoalbidus. For Pathol 43:462–467

    Article  Google Scholar 

  • Duan X, Chi Z, Wang L, Wang X (2008) Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73:587–593

    Article  CAS  PubMed  Google Scholar 

  • Duarte AWF, Passarini MRZ, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885

    Article  Google Scholar 

  • Eastwood DC, Herman B, Noble R, Dobrovin-Pennington A, Sreenivasaprasad S, Burton KS (2013) Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO2. Fungal Genet Biol 55:54–66

    Article  CAS  PubMed  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, Fleck ND, Lindquist E, Grigoriev IV, Doty SL (2015) Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 6:978

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa C, Gábor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Fonseca Á, Rodriguez M (2011) Taprhina fries (1832). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, vol 2, 5th edn. Elsevier, Amsterdam, pp 823–858

    Chapter  Google Scholar 

  • Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136

    Article  CAS  Google Scholar 

  • Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol 120:433–448

    Article  CAS  PubMed  Google Scholar 

  • Gafni A, Calderon CE, Harris R, Buxdorf K, Dafa-Berger A, Zeilinger-Reichert E, Levy M (2015) Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front Plant Sci 6:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Glushakova AM, Chernov IY (2007) Seasonal dynamic of the numbers of epiphytic yeasts. Microbiology 76:668–674

    CAS  PubMed  Google Scholar 

  • Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova AM, Yurkov AM, Chernov IY (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76:799–803

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Chernov IY (2014) Yeasts in the flowers of entomophilic plants of the Moscow region. Microbiology 83:125–134

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Zheltikova TM, Chernov IY (2015a) Yeasts associated with wind-pollinated plants – leading pollen allergens in Central Russia. Microbiology 84:722–725

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Zheltikova TM, Chernov IY (2015b) Resistance of various yeast ecological groups to prolonged storage in dry state. Microbiology 84:379–385

    CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 Genes. Science 274:546–567

    Article  CAS  PubMed  Google Scholar 

  • Golonka AM, Vilgalys R (2013) Nectar inhabiting yeasts in Virginian populations of Silene latifolia (Caryophyllaceae) and coflowering species. Am Midl Nat 169:235–258

    Article  Google Scholar 

  • Golubev WI, Golubeva EW (2004) Yeast fungi in steppe and forest phytocenoses of the Prioksko-terrasny biosphere reserve. Mikol Fitopatol 38:20–27

    Google Scholar 

  • Golubev WI, Sampaio JP, Golubeva EW (2006) Cryptococcus stepposus, a new filobasidiaceous yeast species found in the Prioksko-terrasny biosphere reserve in Russia. Mycol Res 110:957–961

    Article  CAS  PubMed  Google Scholar 

  • Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Ji L (2016) Draft genome sequences of Rhodosporidium toruloides strains ATCC 10788 and ATCC 10657 with compatible mating types. Genome Announc 4:e00098-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Inácio J, Pereira P, Carvalho M, Fonseca Á, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353

    Article  PubMed  Google Scholar 

  • Inácio J, Portugal L, Spencer-Martins I, Fonseca Á (2005) Phylloplane yeasts from Portugal: seven novel anamorphic species in the Tremellales lineage of the Hymenomycetes (Basidiomycota) producing orange-coloured colonies. FEMS Yeast Res 5:1167–1183

    Article  PubMed  CAS  Google Scholar 

  • Inácio J, Ludwig W, Spencer-Martins I, Fonseca Á (2009) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol Ecol 71:61–72

    Article  CAS  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  CAS  PubMed  Google Scholar 

  • Kachalkin AV (2010) New data on the distribution of certain psychrophilic yeasts in Moscow oblast. Microbiology 79:840–844

    Article  CAS  Google Scholar 

  • Kachalkin AV, Yurkov AM (2012) Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov. A van Leeuwenhoek 102:29–43

    Article  Google Scholar 

  • Kachalkin AV, Glushakova AM, Yurkov AM, Chernov IY (2008) Characterization of yeast groupings in the phyllosphere of Sphagnum mosses. Microbiology 77:474–481

    Article  CAS  Google Scholar 

  • Kahmann R, Kämper J (2004) Ustilago maydis: how its biology relates to pathogenic development. New Phytol 164:31–42

    Article  CAS  Google Scholar 

  • Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A, Slippers B (2013) Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS One 8:e81718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KW, Park EW, Ahn KK (1999) Pre-penetration behavior of Botryosphaeria dothidea on apple fruits. Plant Pathol J 15:223–227

    Google Scholar 

  • Klassen R, Schaffrath R, Buzzini P, Ganter PF (2017) Antagonistic interactions and killer yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 229–275

    Google Scholar 

  • Kumar S, Kushwaha H, Bachhawat AK, Raghava GPS, Ganesan K (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryot Cell 11:1083–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtzman CP, Robnett CJ (2015) Occultifur kilbournensis f.a. sp. nov., a new member of the Cystobasidiales associated with maize (Zea mays) cultivation. A van Leeuwenhoek 107:1323–1329

    Article  CAS  Google Scholar 

  • Kvasnikov EI, Nagornaia SS, Shchelokova IF (1975) Yeast flora of plant rhizosphere and phyllosphere. Microbiology 44:339–346

    CAS  PubMed  Google Scholar 

  • Landell MF, Inácio J, Fonseca A, Vainstein MH, Valente P (2009) Cryptococcus bromeliarum sp. nov., an orange-coloured basidiomycetous yeast isolated from bromeliads in Brazil. Int J Syst Evol Microbiol 59:910–913

    Article  CAS  PubMed  Google Scholar 

  • Landell MF, Brandão LR, Barbosa AC, Ramos JP, Safar SV, Gomes FC, Sousa FM, Morais PB, Broetto L, Leoncini O, Ribeiro JR, Fungsin B, Takashima M, Nakase T, Lee CF, Vainstein MH, Fell JW, Scorzetti G, Vishniac HS, Rosa CA, Valente P (2014) Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil. Int J Syst Evol Microbiol 64:1970–1977

    Article  PubMed  Google Scholar 

  • Libkind D, Moliné M, Sommaruga R, Sampaio JP, van Broock M (2011) Phylogenetic distribution of fungal mycosporines within the Pucciniomycotina (Basidiomycota). Yeast 28:619–627

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28:3323–3335

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H (2014) Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 30:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481

    Article  CAS  Google Scholar 

  • Mannazzu I, Landolfo S, da Silva TL, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1665–1673

    Article  CAS  PubMed  Google Scholar 

  • Men’ko EV, Chernov IY, Byzov BA (2006) Interrelationships between yeast fungi and collembolans in soil. Microbiology 75:708–715

    Article  CAS  Google Scholar 

  • Mittelbach M, Vannette RL (2017) Mutualism in yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 155–178

    Google Scholar 

  • Montenegro G, Portaluppi MC, Salas FA, Díaz MF (2009) Biological properties of the Chilean native moss Sphagnum magellanicum. Biol Res 42:233–237

    Article  PubMed  Google Scholar 

  • Morin N, Calcas X, Devillers H, Durrens P, Sherman DJ, Nicaud J-M, Neuvéglise C (2014) Draft genome sequence of Rhodosporidium toruloides CECT1137, an oleaginous yeast of biotechnological interest. Genome Announc 2:e00641-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nemčovič M, Jakubíková L, Víden I, Farkaš V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    Article  PubMed  CAS  Google Scholar 

  • Nix-Stohr S, Burpee LL, Buck JW (2008) The influence of exogenous nutrients on the abundance of yeasts on the phylloplane of turfgrass. Microb Ecol 55:15–20

    Article  PubMed  Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694

    Article  CAS  PubMed  Google Scholar 

  • Nutaratat P, Amsri W, Srisuk N, Arunrattiyakorn P, Limtong S (2015) Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J Gen Appl Microbiol 61:1–9

    Article  CAS  PubMed  Google Scholar 

  • Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the Taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan Taiga. Springer, New York, pp 121–137

    Chapter  Google Scholar 

  • Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohydr Polym 36:335–347

    Article  CAS  Google Scholar 

  • Paul D, Magbanua Z, Arick M, French T, Bridges SM, Burgess SC, Lawrence ML (2014) Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc 13:e00046-14

    Article  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38:35–39

    Article  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rydin H, Gunnarsson U, Sundberg S (2006) The role of Sphagnum in peatland development and persistence. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 47–65

    Chapter  Google Scholar 

  • Santiago IF, Rosa CA, Rosa LH (2017) Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol 40:177–183

    Article  Google Scholar 

  • Scarpella E, Barkoulas M, Tsiantis M (2010) Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2:a001511

    Article  PubMed  PubMed Central  Google Scholar 

  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    Article  CAS  Google Scholar 

  • Solis MJL, Yurkov A, dela Cruz TE, Unterseher M (2014) Leaf-inhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol Prog 14:1019

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Streletskii RA, Kachalkin AV, Glushakova AM, Demin VV, Chernov IY (2016) Quantitative determination of indole-3-acetic acid in yeasts using high performance liquid chromatography – tandem mass spectrometry. Microbiology 85:727–736

    Article  CAS  Google Scholar 

  • Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY (2014) Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 9:e114196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takashima M, Sugita T, Van BH, Nakamura M, Endoh R, Ohkuma M (2012) Taxonomic richness of yeasts in Japan within subtropical and cool temperate areas. PLoS One 7:e50784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43

    Article  Google Scholar 

  • Thormann MN, Rice AV, Beilman DW (2007) Yeasts in peatlands: a review of richness and roles in peat decomposition. Wetlands 27:761–773

    Article  Google Scholar 

  • Tian H, De Smet I, Ding Z (2014) Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 19:426–431

    Article  CAS  PubMed  Google Scholar 

  • Tsai IJ, Tanaka E, Masuya H, Tanaka R, Hirooka Y, Endoh R, Sahashi N, Kikuchi T (2014) Comparative genomics of Taphrina fungi causing varying degrees of tumorous deformity in plants. Genome Biol Evol 6:861–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409

    Article  Google Scholar 

  • Turner NC (1973) Action of fusicoccin on the potassium balance of guard cells of Phaseolus vulgaris. Am J Bot 60(7):717–725

    Article  CAS  Google Scholar 

  • Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech Fagus sylvatica. Fungal Ecol 3:366–378

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  PubMed  Google Scholar 

  • Vasileva-Tonkova E, Romanovskaya V, Gladka G, Gouliamova D, Tomova I, Stoilova-Disheva M, Tashyrev O (2014) Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, Maritime Antarctica. World J Microbiol Biotechnol 30:1387–1398

    Article  CAS  PubMed  Google Scholar 

  • Viret O, Petrini O (1994) Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda). Mycol Res 98:423–432

    Article  Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • Vishniac HS, Anderson JA, Filonow AB (1997) Assimilation of volatiles from ripe apples by Sporidiobolus salmonicolor and Tilletiopsis washingtonensis. A van Leeuwenhoek 72:201–207

    Article  CAS  Google Scholar 

  • Wang QM, Boekhout T, Bai FY (2012) Bensingtonia rectispora sp. nov. and Bensingtonia bomiensis sp. nov., ballistoconidium-forming yeast species from Tibetan plant leaves. Int J Syst Evol Microbiol 62:2039–2044

    Article  PubMed  Google Scholar 

  • Wang QM, Groenewald M, Takashima M, Theelen B, Han P-J, Liu X-Z, Boekhout T, Bai F-Y (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    Article  PubMed  Google Scholar 

  • Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015c) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Womack AM, Artaxo PE, Ishida FY, Mueller RC, Saleska SR, Wiedemann KT, Bohannan BJM, Green JL (2015) Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest. Biogeosciences 12:6337–6349

    Article  CAS  Google Scholar 

  • Wuczkowski M, Metzger E, Sterflinger K, Prillinger H (2005) Diversity of yeasts isolated from litter and soil of different natural forest sites in Austria. Die Bodenkultur 56:201–2008

    CAS  Google Scholar 

  • Xin G, Glawe D, Doty SL (2009) Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res 113:973–980

    Article  CAS  PubMed  Google Scholar 

  • Yurkov AM (2017) Temporal and geographic patterns in yeast distribution. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 101–130

    Google Scholar 

  • Yurkov AM, Maksimova IA, Chernov IY (2004) The comparative analysis of yeast communities in birch forests of the European part of Russia and Western Siberia. Mikol Fitopatol 38:71–79

    Google Scholar 

  • Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP (2008) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology 77:1–6

    Article  CAS  Google Scholar 

  • Yurkov AM, Krüger D, Begerow D, Arnold N, Tarkka MT (2012) Basidiomycetous yeasts from Boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microb Ecol 63:295–303

    Article  PubMed  Google Scholar 

  • Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á (2015a) Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS One 10:e0120400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yurkov AM, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Garcia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015b) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. A van Leeuwenhoek 107:173–185

    Article  CAS  Google Scholar 

  • Yurkov AM, Inácio J, Chernov IY, Fonseca Á (2015c) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Liu H, Wang C, J-R X (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kemler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kemler, M., Witfeld, F., Begerow, D., Yurkov, A. (2017). Phylloplane Yeasts in Temperate Climates. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Diversity. Springer, Cham. https://doi.org/10.1007/978-3-319-62683-3_6

Download citation

Publish with us

Policies and ethics