Skip to main content
Log in

Yeasts from phylloplane and their capability to produce indole-3-acetic acid

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeasts were isolated from the phylloplane of various plant species collected from seven provinces in Thailand. A total of 114 yeast strains and 10 strains of a yeast-like fungus were obtained by enrichment isolation from 91 out of 97 leaf samples (93.8 %). On the basis of the D1/D2 domain of the large subunit rRNA gene sequence similarity, 98 strains were identified to be of 36 yeast species in 18 genera belonging to Ascomycota viz. Candida, Clavispora, Cyberlindnera, Debaryomyces, Hanseniaspora, Hyphopichia, Kazachstania, Kluyveromyces, Kodamaea, Lachancea, Metschnikowia, Meyrozyma, Pichia, Starmerella, Torulaspora and Wickerhamomyces, and to Basidiomycota viz. Sporidiobolus and Trichosporon. Three strains were found to represent two novels Candida species which were previously described as C. sirachaensis and C. sakaeoensis. Ten strains of yeast-like fungus were identified as Aureobasidium pullulans of the phylum Ascomycota. Ascomycetous yeast species accounted altogether for 98.0 % of the 98 strains. The prevalent species was Candida tropicalis with a low frequency of isolation (14.3 %). Diversity of yeasts other than ballistoconidium-forming yeast in phylloplane in a tropical country in Asia has been reported for the first time. All strains obtained were accessed for the capability to produce IAA and result revealed that 39 strains in 20 species, one strain each of an undescribed and a novel species, and two unidentified strains showed the capability of producing IAA when cultivated in yeast extract peptone dextrose broth supplemented with 0.1 % l-tryptophan. All five strains of Candida maltosa produced relatively high concentrations of IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer JZ, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Andrews JH, Harris RE (2000) The ecology and biogeography of microorganisms on plant surfaces. Ann Rev Phytopathol 38:145–180

    Article  Google Scholar 

  • Bilkay IS, Karakoc S, Aksoz N (2010) Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turk J Biol 34:313–318

    CAS  Google Scholar 

  • Cadez N, Smith MTh (2011) Hanseniaspora Ziker (1912). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 421–434

    Chapter  Google Scholar 

  • Cleland RE (1990) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer, Dordrecht, pp 132–148

    Google Scholar 

  • de Azeredo LAI, Gomes EAT, Mendonca-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int Microbiol 1:205–208

    Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fonseca A, Inacio J (2006) Phylloplane yeasts. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Glickmann E, Dessaux Y (1994) A critical examination of the specificity of the Salkoski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    Google Scholar 

  • Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova AM, Yurkov AM, Chernov IY (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76:799–803

    Article  CAS  Google Scholar 

  • Imanishi Y, Jindamorakot S, Mikata K, Nakagiri A, Limtong S, Potacharoen W, Tanticharoen M, Nakase T (2008) Two new ascomycetous anamorphic yeast species related to Candida friedrichii-Candida jaroonii sp. nov., and Candida songkhlaensis sp. nov. isolated in Thailand. Antonie Van Leeuwenhoek 94:267–276

    Article  Google Scholar 

  • Inácio J, Portugal L, Spencer-Martins I, Fonseca A (2005) Phylloplane yeasts from Portugal: seven novel anamorphic species in the Tremellales lineage of the Hymenomycetes (Basidiomycota) producing orange-coloured colonies. FEMS Yeast Res 5:1167–1183

    Article  Google Scholar 

  • Jindamorakot S, Ninomiya S, Limtong S, Yongmanitchai W, Tuntirungkij M, Potacharoen W, Tanaka K, Kawasaki H, Nakase T (2009) Three new species of bipolar budding yeasts of the genus Hanseniaspora and its anamorph Kloeckera isolated in Thailand. FEMS Yeast Res 9:1327–1337

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsia J Biosci 4:23–32

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Koowadjanakul N, Jindamorakot S, Yongmanitchai W, Limtong S (2011) Ogataea phyllophila sp. nov., Candida chumphonensis sp. nov. and Candida mattranensis sp. nov., three methylotrophic yeast species from phylloplane in Thailand. Antonie Van Leeuwenhoek 100:207–217

    Article  Google Scholar 

  • Kurtzman CP (2011a) Hyphopichia van Arx & van der Walt 1976. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1279

    Google Scholar 

  • Kurtzman CP (2011b) Pichia EC Hansen (1904). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 685–708

    Chapter  Google Scholar 

  • Kurtzman CP (2011c) Meyerozyma Kurtzman & M. Suzuki (2010). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 621–624

  • Kurtzman CP (2011d) Starmerella Rosa & Lachance (1998). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 811–816

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  • Lachance M-A (2011a) Clavispora Rodrigues de Mirande (1979). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 349–354

    Chapter  Google Scholar 

  • Lachance M-A (2011b) Kluyveromyces van der Walt (1971). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 471–482

    Chapter  Google Scholar 

  • Lachance M-A (2011c) Metschnikowia Kamienski (1899). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 575–620

    Chapter  Google Scholar 

  • Lachance M-A, Kurtzman CP (2011a) Kodamae Y Yamada, T Suzuki, Matsuda & Mikata emend. Rosa, Lachance, Starmer, Barker, Bowles & Schlag-Edler (1999). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 483–490

    Chapter  Google Scholar 

  • Lachance M-A, Kurtzman CP (2011b) Lachancea Kurtzman (2003). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 511–520

    Chapter  Google Scholar 

  • Lachance M-A, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1279

    Chapter  Google Scholar 

  • Landell MF, Billodre R, Ramos JP, Leoncini O, Vainstein MH, Valente P (2010) Candida aechmeae sp. nov. and Candida vrieseae sp. nov., novel yeast species isolated from the phylloplane of bromeliads in Southern Brazil. Int J Syst Evol Microbiol 60:244–248

    Article  CAS  Google Scholar 

  • Limtong S, Yongmanitchai W, Tun MM, Kawasaki H, Seki T (2007) Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. Int J Syst Evol Microbiol 57:419–422

    Article  Google Scholar 

  • Limtong S, Yongmanitchai W, Kawasaki H, Fujiyama K (2009) Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res 9:504–510

    Article  CAS  Google Scholar 

  • Limtong S, Koowadjanakul N, Jindamorakot S, Yongmanitchai W, Nakase T (2012) Candida sirachaensis sp. nov. and Candida sakaeoensis sp. nov. two anamorphic yeast species from phylloplane in Thailand. Antonie van Leeuwenhoek. doi:10.1007/s10482-012-9728-9

  • Mujahid M, Sasikala Ch, Ramana CV (2001) Production of indole-3-acetic acid and related indole derivatives from l-tryptophan by Rubrivivax benzoatilyticus JA2. Appl Microbiol Biotechnol 89:1001–1008

    Article  Google Scholar 

  • Nakamura T, Murakami T, Saotome M, Tomita K, Kitsuwa T, Meyers SP (1991) Identification of indole-3-acetic acid in Pichia spartina an ascosporogenous yeast from Spartina alterniflora marshland environments. Mycologia 83:662–664

    Article  CAS  Google Scholar 

  • Nakase T, Takashima M, Itoh M, Fungsin B, Potacharoen W, Atthasampunna P, Komagata K (2001) Ballistoconidium-forming yeasts found in the phyllosphere of Thailand. Microbiol Cult Coll 17:23–33

    Google Scholar 

  • Nakase T, Jindamorakot S, Imanishi Y, Am-In S, Ninomiya S, Kawasaki H, Limtong S (2010) Candida potacharoeniae sp. nov. and Candida spenceri sp. nov., two novel galactose-containing ascomycetous anamorphic yeast species isolated in Thailand. J Gen Appl Microbiol 56:287–295

    Article  CAS  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Perondi NL, Luz WC, Thomas R (1996) Microbiological control of Gibberella in wheat in wheat. Fitopatol Bras 21:243–2496

    Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts, 2nd edn. Academic, London, pp 123–180

    Google Scholar 

  • Rosa CA, Lachance M-A, Silva JOC, Teixeira ACP, Marini MM, Antonini Y, Martins RP (2003) Yeast communities associated with stingless bees. FEMS Yeast Res 4:271–275

    Google Scholar 

  • Ruanpanun P, Tangchitosomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophores production. World J Microbiol Biotechnol 26:1569–1578

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sampaio JP (2011) Sporidiobolus Naland 1949. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1549–1561

    Chapter  Google Scholar 

  • Sasikala C, Ramana CV (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microbial Physiol 39:339–377

    Article  CAS  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Sipiczki M (2010) Candida stigmatis sp. nov., a new anamorphic yeast species isolated from flowers. FEMS Yeast Res 10:362–365

    Article  CAS  Google Scholar 

  • Slavikova E, Vadkertiova R, Vranova D (2009) Yeasts colonizing the leaves of fruit trees. Ann Microbiol 59:419–424

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Google Scholar 

  • Xin G, Glawe D, Doty SL (2009) Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res 113:973–980

    Article  CAS  Google Scholar 

  • Xinxian L, Xuemei C, Yagang C, Woon-Chung W, Zebin W, Qitang W (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27:1197–1207

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Thailand and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitree Limtong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limtong, S., Koowadjanakul, N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28, 3323–3335 (2012). https://doi.org/10.1007/s11274-012-1144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1144-9

Keywords

Navigation