Skip to main content
Log in

Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expected to reach about US$1.4 billion in 2018. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an appealing alternative to the chemical route, partly due to consumer concerns against synthetic pigments. Among the yeasts, and apart from the pigmented species Phaffia rhodozyma (and its teleomorph Xanthophyllomyces dendrorhous), a handful of species of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus are well known carotenoid producers. These are known as ‘red yeasts’, and their ability to synthesize mixtures of carotenoids from low-cost carbon sources has been broadly studied recently. Here, in agreement with the renewed interest in microbial carotenoids, the recent literature is reviewed regarding the taxonomy of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus, the stress factors that influence their carotenogenesis, and the most advanced analytical tools for evaluation of carotenoid production. Moreover, a synopsis of the molecular and “-omic” tools available for elucidation of the metabolic pathways of the microbial carotenoids is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott EP, Ianiri G, Castoria R, Idnurm A (2013) Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 97:283–295

    Article  CAS  Google Scholar 

  • Aksu Z, Eren AT (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as carbon source. Process Biochem 40:2985–2991. doi:10.1016/j.procbio.2005.01.011

    Article  CAS  Google Scholar 

  • Amorim-Carrilho KT, Cepeda A, Fente C, Regal P (2014) Review of methods for analysis of carotenoids. TrAC Trends Anal Chem 56:49–73

    Article  CAS  Google Scholar 

  • BCC Research (2011) The global market for carotenoids. http://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-market-fod025d.html. Published Sept 2011

  • Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    Article  CAS  Google Scholar 

  • Bhosale PB, Gadre RV (2001a) Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol 55(4):423–427

    Article  CAS  Google Scholar 

  • Bhosale PB, Gadre RV (2001b) β-Carotene production in sugar cane molasses by a Rhodotorula glutinis mutant. J Ind Microbiol Biotechnol 26(6):327–332

    Article  CAS  Google Scholar 

  • Boekhout T (2011) Bulleromyces Boekhout & Fonseca (1991). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1391–1394

    Chapter  Google Scholar 

  • Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P (2005) Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Microb Technol 36(5–6):687–692

    Article  CAS  Google Scholar 

  • Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 53:1024–1031

    Article  CAS  Google Scholar 

  • Buzzini P, Goretti M, Branda E, Turchetti B (2010) Basidiomycetous yeasts for production of carotenoids. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 1. Wiley, New York, pp 469–481

    Google Scholar 

  • Cutzu R, Clemente A, Nobre B, Mannazzu I, Roseiro J, Lopes da Silva T (2013a) Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry. J Ind Microbiol Biotechnol 40:865–875

    Article  CAS  Google Scholar 

  • Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I (2013b) From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29(6):1009–1017

    Article  CAS  Google Scholar 

  • Davoli P, Mierau V, Weber RWS (2004) Carotenoids and fatty acids in red yeast Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol 40(4):392–397

    Article  CAS  Google Scholar 

  • Debarati P, Magbanua Z, Arick M II, French T, Bridges SM, Burgess SC, Lawrence ML (2014) Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc 2(1):e00046-14. doi:10.1128/genomeA.00046-14

    Article  Google Scholar 

  • Deligios M, Fraumene C, Abbondio M, Mannazzu I, Tanca A, Addis MF, Uzzau S (2015) Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc 3(2):e00201–e00215. doi:10.1128/genomeA.00201-15

    Article  Google Scholar 

  • Dufossé L (2006) Food grade pigments. Food Technol Biotech 44(3):313–321

    Google Scholar 

  • Fell JW, Johnson EA (2011) Phaffia M.W. Miller, Yoneyama & Soneda (1976). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1853–1856

    Chapter  Google Scholar 

  • Fell JW, Johnson EA, Scorzetti G (2011) Xanthophyllomyces Golubev (1995). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1595–1601

    Chapter  Google Scholar 

  • Ferrao M, Garg S (2012) Shake flask optimization of & β-carotene production in Rhodotorula graminis RC04. Afr J Biotechnol 11(52):11431–11437

    CAS  Google Scholar 

  • Freitas C, Nobre B, Gouveia L, Roseiro J, Reis A, Lopes da Silva T (2014) New at-line flow cytometric protocols for determining carotenoid content and cell viability during Rhodosporidium toruloides NCYC 921 batch growth. Proc Biochem 49:554–562

    Article  CAS  Google Scholar 

  • Guo W, Tang H, Zhang L (2014) Lycopene cyclase and phytoene synthase activities in the marine yeast Rhodosporidium diobovatum are encoded by a single gene crtYB. J Basic Microbiol 54:1053–1061

    Article  CAS  Google Scholar 

  • Guo W, Liu Y, Yan X, Liu M, Tang H, Liu Z, Zhang L (2015) Cloning and characterization of a phytoene dehydrogenase gene from marine yeast Rhodosporidium diobovatum. DOI, A van Leeuw J Microb. doi:10.1007/s10482-015-0394-6

    Google Scholar 

  • Hamamoto M, Boekhout T, Nakase T (2011) Sporobolomyces Kluyver & van Niel (1924). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1929–1990

    Chapter  Google Scholar 

  • Hernandez-Almanza A, Montanez JC, Aguilar-Gonzalez MA, Martinez-Avila C, Rodriguez-Herrera R, Aguilar CN (2014) Rhodotorula glutinis as source of pigments and metabolites for food industries. Food Biosci 5:64–72

    Article  CAS  Google Scholar 

  • Herrero M, Cacciola F, Donato P, Giuffrida D, Dugo G, Dugo P, Mondello L (2008) Serial coupled columns reversed-phase separations in high-performance liquid chromatography: tool for analysis of complex real samples. J Chromatogr 1188:208–215

    Article  CAS  Google Scholar 

  • Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effect of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847

    Article  CAS  Google Scholar 

  • Ianiri G, Wright SAI, Castoria R, Idnurm A (2011) Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 48:685–695

    Article  CAS  Google Scholar 

  • Irazusta V, Estévez C, Amoroso MJ, de Figueroa LJ (2012) Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress. Biometals 25:517–527

    Article  CAS  Google Scholar 

  • Irazusta V, Nieto-Penalver CG, Cabral ME, Amoroso MJ, de Figueroa LIC (2013) Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem 48:803–809

    Article  CAS  Google Scholar 

  • Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 97:7563–7577

    Article  CAS  Google Scholar 

  • Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 21–44

    Chapter  Google Scholar 

  • Johnson EA, Schroeder WA (1995) Microbial carotenoids. In: Fiechter A (ed) Adv Biochem Eng Biotechnol 53:119–178

  • Kaiser P, Surmann P, Vallentin G, Fuhmann H (2007) A small-scale method for quantitation of carotenoids in bacteria and yeasts. J Microbiol Method 70:142–149

    Article  CAS  Google Scholar 

  • Kirti K, Amita S, Priti S, Kumar AM, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol ID837891

  • Koh CMJ, Liu Y, Moehninsi MD, Ji L (2014) Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporiudium toruloides. BMC Microbiol 14:50

    Article  Google Scholar 

  • Kumar S, Kushwaha H, Bachhawat AK, Raghava GPS, Ganesan K (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryot Cell 11(8):1083–1084

    Article  Google Scholar 

  • Li Z, Sun H, Mo X, Li X, Xu B, Tian P (2013) Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol 97:4927–4936

    Article  CAS  Google Scholar 

  • Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ, Yang F, Sun W, Wang X, Zhao ZK (2014) Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. Yeast 14:547–555

    Article  CAS  Google Scholar 

  • Liu H, Zhao X, Wang F, Li F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H (2009) Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast 26:553–566

    Article  Google Scholar 

  • Liu Y, Chong Mei JK, Longhua S, Mya Myintzu H, Minge Du, Ni P, Lianghui J (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97:719–729

    Article  CAS  Google Scholar 

  • Mahmoud AGY, Abo-Shady MA, El-Sheekh MM, Hamza TW (2014) The role of some stress factors including hydrogen peroxide, methylen blue, sodium chloride and ultraviolet on Rhodotorula glutinis DBVPG# 4400 total carotenoids production. Int J Biosci (IJB) 4(9):10–19

    Google Scholar 

  • Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP (2008) Carotenoids of yeasts isolated from Brazilian ecosystem. Food Chem 107(1):145–150

    Article  CAS  Google Scholar 

  • Malisorn C, Suntornsuk W (2008) Optimization of & β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour Technol 99:2281–2287

    Article  CAS  Google Scholar 

  • Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcaíno J, Baeza M, Cifuentes V (2011) Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous. BMC Microbiol 11:190

    Article  CAS  Google Scholar 

  • Marova I, Breierova E, Koci R, Friedl Z, Slovak B, Pokorna J (2004) Influence of exogenous stress factors on production of carotenoids by some strains of carotenogenic yeasts. Ann Microbiol 54:73–85

    CAS  Google Scholar 

  • Marova I, Carnecka M, Halienova A, Koci R, Breierova E (2010) Production of carotenoid/ergosterol supplemeted biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol Biotech 48:56–61

    CAS  Google Scholar 

  • Marova I, Certik M, Breierova E (2011) Production of enriched biomass by carotenogenic yeasts—application of whole-cell yeast biomass to production of pigments and other lipid compounds, biomass—detection, production and usage. Darko Matovic (ed), ISBN:978-953-307-492-4

  • Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manag 95:S338–S342

    Article  CAS  Google Scholar 

  • Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V (2015) Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMG Genomics 16:289

    Article  Google Scholar 

  • Mata-Gomez LC, Montañez JC, Méndez-Zavala Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    Article  Google Scholar 

  • Morin N, Calcas X, Devillers H, Durrens P, Sherman DJ, Nicaud J-M, Neuveglise C (2014) Draft genome of Rhodosporidium toruloides CECT1137, an oleaginous yeast of biotechnological interest. Genome Announc 2(4):e00641-14

    Article  Google Scholar 

  • Nishida H, Robert V, Sugiyama J (2011) Mixia C.L. Kramer emend. H. Nishida, K. Ando, Y. Ando, Hirata & Sugiyama (1995). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1499–1502

    Chapter  Google Scholar 

  • Nishijima M, Araki-Sakai M, Sano H (1997) Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122

    Article  CAS  Google Scholar 

  • Park PK, Kim EY, Chu KH (2007) Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep Purif Technol 53:148–152

    Article  CAS  Google Scholar 

  • Petrik S, Marova I, Haronikova A, Kostovova I, Breierova E (2013) Production of biomass, carotenoid and other lipid metabolites by several red yeasts strains cultivated on waste glycerol from biofuel production—a comparative screening study. Ann Microbiol 63:1537–1551

    Article  CAS  Google Scholar 

  • Provesi JG, Dias CO, Amante ER (2011) Changes in carotenoids during processing and storage of pumpkin puree. Food Chem 128:195–202

    Article  CAS  Google Scholar 

  • Rapta P, Polovka M, Zalibera M, Breierova E, Zitnanova I, Marova I, Certik M (2005) Scavenging andantioxidant properties of compounds synthesized by carotenogenic yeasts stressed by heavy metals—EPR spin trapping study. Biophys Chem 116:1–9

    Article  CAS  Google Scholar 

  • Razavi SH (2006) UV-HPLC/APCI/MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran J Chem Chem Eng 25:1–10

    CAS  Google Scholar 

  • Rodríguez-Amaya D (2001) In: Rodríguez-Amaya D (ed) A guide to carotenoid analysis in foods. ILSI Press, Washington DC

    Google Scholar 

  • Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S (2001) Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng 92:294–297

    Article  CAS  Google Scholar 

  • Sampaio JP (2011a) Cystofilobasidium Oberwinkler & Bandoni (1983). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1423–1432

    Chapter  Google Scholar 

  • Sampaio JP (2011b) Rhodosporidium Banno (1967). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1523–1540

    Chapter  Google Scholar 

  • Sampaio JP (2011c) Rhodotorula Harrison (1928). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1873–1928

    Chapter  Google Scholar 

  • Sampaio JP (2011d) Sporidiobolus Nyland (1949). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1549–1562

    Chapter  Google Scholar 

  • Sampaio JP, Oberwinkler F (2011a) Cystobasidium (Lagerheim) Neuhoff (1924). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1419–1422

    Chapter  Google Scholar 

  • Sampaio JP, Oberwinkler F (2011b) Occultifur Oberwinkler (1990). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1515–1518

    Chapter  Google Scholar 

  • Somashekar D, Joseph R (2000) Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of growth medium. World J Microbiol Biotechnol 16:491–493

    Article  CAS  Google Scholar 

  • Soroka IM, Narushin VG, Turiyansky YD, Tyurenkov AA (2012) Spectroscopy analysis for simultaneous determination of lycopene and β-carotene in fungal biomass of Blakeslea trispora. Acta Biochim Pol 59:65–69

    CAS  Google Scholar 

  • Squina FM, Mercadante AZ (2005) Influence of nicotine and dyphenylamine on the carotenoid composition of Rhodotorula strains. J Food Biochem 29(6):638–652

    Article  CAS  Google Scholar 

  • Takahashi S, Okada H, Abe K, Kera Y (2014) Genetic transformation of the yeast Rhodotorula gracilis ATCC 26217 by electroporation. Appl Biochem Microbiol 50(6):624–628

    Article  CAS  Google Scholar 

  • Tinoi T, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Proc Biochem 40:2551–2557

    Article  CAS  Google Scholar 

  • Tully M, Gilbert HJ (1985) Transformation of Rhodosporidium toruloides. Gene 36(3):235–240

    Article  CAS  Google Scholar 

  • Ukibe K, Katsuragi T, Tani Y, Takagi H (2008) Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flow cytometry. FEMS Microbiol Lett 286:241–248

    Article  CAS  Google Scholar 

  • Vachali P, Bhosale P, Bernstein PS (2012) Microbial carotenoids. In: Barredo J-L (ed) Microbial carotenoids from fungi: methods and protocols. Methods Mol Biol 898:41–59

  • Verdoes JC, Krubasik KP, Sandman G, van Ooyen AJ (1999) Isolation and functional characterization of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–461

    Article  CAS  Google Scholar 

  • Wang SL, Sun JS, Han BZ, Wu XZ (2008) Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure. Korean J Chem Eng 25(3):513–516

    Article  CAS  Google Scholar 

  • Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF (2013) Proteomic analysis of a high aluminium tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminium stress. Biochim Biophys Acta 1834:1969–1975

    Article  CAS  Google Scholar 

  • Yen HW, Zhang Z (2011) Enhancement of cell wall growth rate by light irradiation in the cultivation of Rhodotorula glutinis. Bioresour Technol 102:9279–9281

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. doi:10.1038/ncomms2112

  • Zoz L, Carvalho JC, Soccol VT, Casagrande TC, Cardoso L (2015) Torularhodin and torulene: bioproduction, properties, and prospective applications in food and cosmetics—a review. Braz Arch Biol Technol 58(2):278–288

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Regione Autonoma della Sardegna (LR7/07-2010; grant to I.M. and fellowship to S.L.). The authors are grateful to Benedetta Turchetti for valuable help in drawing the phylogenetic tree of red yeasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Mannazzu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannazzu, I., Landolfo, S., da Silva, T.L. et al. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31, 1665–1673 (2015). https://doi.org/10.1007/s11274-015-1927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1927-x

Keywords

Navigation