Skip to main content

Mycorrhization of Fagaceae Forests Within Mediterranean Ecosystems

  • Chapter
  • First Online:
Mycorrhiza - Function, Diversity, State of the Art

Abstract

Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acácio V, Holmgren M, Rego F, Moreira F, Mohren GMJ (2009) Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agrofor Syst 76:389–400. doi:10.1007/s10457-008-9165-y

    Article  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal myce-lial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Amaral Franco J (1990) Quercus. In: Castroviejo S (ed) Flora Iberica, vol 2. Real Jardín Botánico de Madrid, CSIC, Madrid, pp 15–36

    Google Scholar 

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–27

    Article  Google Scholar 

  • Aponte C, García LV, Marañón T, Gardes M (2010) Indirect host effect on ectomycorrhizal fungi: leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem 42:788–796. doi:10.1016/j.soilbio.2010.01.014

    Article  CAS  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robins N, Herrer EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryantha IP, Cross R, Guest DI (2000) Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology 90:775–782. doi:10.1094/PHYTO.2000.90.7.775

    Article  CAS  PubMed  Google Scholar 

  • Azul AM, Sousa JP, Agerer R, Martín MP, Freitas H (2010) Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios. Mycorrhiza 20:73–88. doi:10.1007/s00572-009-0261-2

    Article  PubMed  Google Scholar 

  • Baptista P, Martins A, Tavares RM, Lino-Neto T (2010) Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecol 3:9–19. doi:10.1016/j.funeco.2009.06.002

    Article  Google Scholar 

  • Baptista P, Reis F, Pereira E, Tavares RM, Santos P, Richard F, Selosse MA, Lino-Neto T (2015) Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environ Microbiol Rep 7:946–954. doi:10.1111/1758-2229.12336

    Article  CAS  PubMed  Google Scholar 

  • Bauman JM, Keiffer CH, Hiremath S, Mccarthy BC (2013) Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration. J Appl Ecol 50:721–729. doi:10.1111/1365-2664.12070

    Article  Google Scholar 

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649

    Article  CAS  PubMed  Google Scholar 

  • Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38. doi:10.1007/s00572-009-0256-z

    Article  PubMed  Google Scholar 

  • Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region: biological diversity in space and time. Oxford, Oxford University Press

    Google Scholar 

  • Blumenstein K, Macaya-Sanz D, Martín JA, Albrectsen BR, Witzell J (2015) Phenotype microarrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Front Microbiol 6:1033. doi:10.3389/fmicb.2015.01033

    Article  PubMed  PubMed Central  Google Scholar 

  • Boa E (2004) Wild edible fungi a global overview of their use and importance to people. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5489e/y5489e00.htm

    Google Scholar 

  • Branzanti MB, Rocca E, Pisi A (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109

    Article  Google Scholar 

  • Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann Sci For 53:347–358. doi:10.1051/forest:19960217

    Article  Google Scholar 

  • Brasier CM (2000) The role of Phytophthora pathogens in forests and semi-natural communities in Europe and Africa. In: Hansen EM, Sutton W (eds) Phytophthora diseases of forest trees. First International Meeting on Phytophthoras in Forest and Wildland Ecosystems. Forest Research Laboratory, Oregon State University

    Google Scholar 

  • Brasier F, Ferraz JFP, Robredo CM (1993) Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol 42:140–145. doi:10.1111/j.1365-3059.1993.tb01482.x

    Article  Google Scholar 

  • Brasier CM, Denman S, Brown A, Webber J (2004) Sudden oak death (Phytophthora ramorum) discovered on trees in Europe. Mycol Res 108:1108–1110. doi:10.1017/S0953756204221244

    Article  Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest: 2006042

    Article  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol Bull 53:77–94

    Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547. doi:10.3389/fpls.2015.00547

    Article  PubMed  PubMed Central  Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci 4:107–138. doi:10.5772/52570

    Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245. doi:10.1007/s00572-004-0313-6

    Article  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–445

    Article  PubMed  CAS  Google Scholar 

  • Buscardo E, Rodriguez-Echeverria S, Martin MP, De Angelis P, Pereira JS, Freitas H (2010) Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol 114:628–636. doi:10.1016/j.funbio.2010.05.004

    Article  PubMed  Google Scholar 

  • Bussotti F, Ferrini F, Pollastrini M, Fini A (2013) The challenge of Mediterranean sclerophyllous vegetation under climate change: from acclimation to adaptation. Environ Exp Bot 103:80–98. doi:10.1016/j.envexpbot.2013.09.013

    Article  Google Scholar 

  • Camilo-Alves C, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432. doi:10.1007/s10342-013-0688-z

    Article  Google Scholar 

  • Causin R, Montecchio L, Accordi SM (1996) Probability of ectomycorrhizal infection in a declining stand of common oak. Ann For Sci 53:743–752. doi:10.1051/forest:19960250

    Article  Google Scholar 

  • Chaturvedi S, Tewari V, Sharma S, Oehl F, Wiemken A, Prakash A, Sharma AK (2012) Diversity of arbuscular mycorrhizal fungi in oak-pine forests and agricultural land prevalent in the Kumaon Himalayan Hills. Br Microbiol Res J 2:82–96. doi:10.9734/BMRJ/2012/1136

    Article  Google Scholar 

  • Choupina AB, Estevinho L, Martins I (2014) Scientifically advanced solutions for chestnut ink disease. Appl Microbiol Biotechnol 98:3905–3909. doi:10.1007/s00253-014-5654-2

    Article  CAS  PubMed  Google Scholar 

  • Coince A, Cael O, Bach C, Lengelle J, Cruaud C, Gavory F, Morin E, Murat C, Marcais B, Buee M (2013) Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecol 6:223–235

    Article  Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39

    Article  Google Scholar 

  • Compant S, van der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Condé S, Richard D, Liamine N (2005) European Environment Agency Europe’ s biodiversity The Mediterranean biogeographical region. In: EEA Europe’s Biodiversity, Alpine, pp 1–54

    Google Scholar 

  • Corcobado T, Vivas M, Moreno G, Solla A (2014) Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. For Ecol Manage 324:72–80. doi:10.1016/j.foreco.2014.03.040

    Article  Google Scholar 

  • Courty P, Franc A, Pierrat J, Garbaye J, Fore R (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi:10.1128/AEM.01592-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawe AL, Nuss DL (2001) Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35:1–29. doi:10.1146/annurev.genet.35.102401.085929

    Article  CAS  PubMed  Google Scholar 

  • De Román M, de Miguel AM (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482. doi:10.1007/s00572-005-0353-6

    Article  PubMed  Google Scholar 

  • Di Pietro M, Churin JL, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547–555. doi:10.1007/s00572-007-0113-x

    Article  PubMed  Google Scholar 

  • Diamandis S, Perlerou C (2001) The mycoflora of the chestnut ecosystems in Greece. For Snow Landsc Res 76:499–504

    Google Scholar 

  • DiLeo MV, Bostock RM, Rizzo DM (2009) Phytophthora ramorum does not cause physiologically significant systemic injury to California bay laurel, its primary reservoir host. Phytopathology 99:1307–1311. doi:10.1094/PHYTO-99-11-1307

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Liang Y, Legendre P, He X, Pei K, Du X, Ma K (2011) Diversity and composition of ectomycorrhizal community on seedling roots: the role of host preference and soil origin. Mycorrhiza 21:669–680. doi:10.1007/s00572-011-0374-2

    Article  PubMed  Google Scholar 

  • Dixon RK, Wright GM, Behrns GT, Tesky RO, Hinckley TM (1980) Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res 10:545–548

    Article  Google Scholar 

  • Dulmer KM, Leduc SD, Horton TR (2014) Ectomycorrhizal inoculum potential of northeastern US forest soils for American chestnut restoration: results from field and laboratory bioassays. Mycorrhiza 24:65–74. doi:10.1007/s00572-013-0514-y

    Article  PubMed  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483. doi:10.1093/jxb/erm009

    Article  CAS  PubMed  Google Scholar 

  • EUFORGEN (2016) http://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Documents/Maps/JPG/Quercus_suber.jpg

  • FAO (2013) http://faostat3.fao.org/download/Q/QV/E

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. doi:10.1038/nature10947

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Maddau L, Marras F (2002) Osservazioni sull’incidenza di funghi endofiti associati al deperimento di Quercus suber e Q. pubescens. In: Franceschi-ni A, Marras F (eds) L’Endofitismo di Funghi e Batteri Patogeni in Piante Arboree e Arbustive. Sassari-Tempio Pausania, Italy, pp 313–325

    Google Scholar 

  • Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17:279–290. doi:10.1007/s00572-006-0103-4

    Article  CAS  PubMed  Google Scholar 

  • Heiniger U, Rigling D (1994) Biological control of chestnut blight in Europe. Annu Rev Phytopathol 32:581–599. doi:10.1146/annurev.py.32.090194.003053

    Article  Google Scholar 

  • Herrmann S (2007) Cross talks at the morphogenetic, physiological and gene regulation levels between the mycobiont Piloderma croceum and oak microcuttings (Quercus robur) during formation of ectomycorrhizas. Phytochemestry 68:52–67. doi:10.1016/j.phytochem.2006.09.028

    Article  CAS  Google Scholar 

  • Herzog C, Peter M, Pritsch K, Gu MS (2012) Drought and air warming affects abundance and exoenzyme profiles of Cenococcum geophilum associated with Quercus. Plant Biol 15:230–237. doi:10.1111/j.1438-8677.2012.00614.x

    Article  PubMed  CAS  Google Scholar 

  • Jany JL, Garbaye J, Martin F (2002) Cenococcum geophilum populations show a high degree of genetic diversity in beech forests. New Phytol 154:651–659. doi:10.1046/j.1469-8137.2002.00408.x

    Article  CAS  Google Scholar 

  • Jönsson-Belyazio U, Rosengren U (2006) Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions? Ann For Sci 63:661–672. doi:10.1051/forest:2006047

    Article  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2246. doi:10.1016/j.soilbio.2006.02.021

    Article  CAS  Google Scholar 

  • Kasai K, Usami T, Lee J, Ishikawa SI, Oikawa T (2000) Responses of ectomycorrhizal colonization and morphotype assemblage of Quercus myrsinaefolia seedlings to elevated air temperature and elevated atmospheric CO2. Microbes Environ 15:197–207

    Article  Google Scholar 

  • Keen B, Vancov T (2010) Phytophthora cinnamomi suppressive soils. In: Curent research, technology and education topics in applied microbiology and microbial biotechnology. FORMATEX, pp 239–250

    Google Scholar 

  • Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann For Sci 72:145–167. doi:10.1007/s13595-014-0446-5

    Article  Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457. doi:10.3732/ajb.1200558

    Article  PubMed  Google Scholar 

  • Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–610. doi:10.1007/s11295-012-0498-3

    Article  Google Scholar 

  • Kuikka K, Härmä E, Markkola AM, Rautio P, Roitto M, Saikkonen K, Ahonen-Jonnarth U, Finlay R, Tuomi J (2003) Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84:2051–2061. doi:10.1890/02-0359

    Article  Google Scholar 

  • Kurth F, Feldhahn L, Bönn M, Herrmann S, Buscot F, Tarkka MT (2015) Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics 16:1–13. doi:10.1186/s12864-015-1856-y

    Article  CAS  Google Scholar 

  • Kurz-Besson C, Otieno D, Lobo Do Vale R, Siegwolf R, Schmidt M, Herd A, Nogueira C, David TS, David JS, Tenhunen J, Pereira JS, Chaves M (2006) Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282:361–378. doi:10.1007/s11104-006-0005-4

    Article  CAS  Google Scholar 

  • Laganà A, Salerni E, Barluzzi C, Perini C, De Dominicis V (2002) Macrofungi as long-term indicators of forest health and management in central Italy. Cryptogam Mycol 23:39–50

    Google Scholar 

  • Lancellotti E, Franceschini A (2013) Studies on the ectomycorrhizal community in a declining Quercus suber L. stand. Mycorrhiza 23:533–542. doi:10.1007/s00572-013-0493-z

    Article  PubMed  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90. doi:10.1007/s00572-010-0348-9

    Article  PubMed  Google Scholar 

  • Lesur I, Le Provost G, Bento P, Silva C, Leplé JC, Murat F, Ueno F, Bartholomé J, Lalanne C, Ehrenmann C, Plomion C (2015) The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 16:112. doi:10.1186/s12864-015-1331-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage 146:69–83. doi:10.1016/j.jenvman.2014.07.030

    Article  PubMed  Google Scholar 

  • Lumaret R, Mir C, Michaud H, Raynal V (2002) Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.) Mol Ecol 11:2327–2336. doi:10.1046/j.1365-294X.2002.01611.x

    Article  CAS  PubMed  Google Scholar 

  • Magalhães AP, Verde N, Reis F, Martins I, Costa D, Lino-Neto T, Castro PH, Tavares PH, Azevedo H (2016) RNA-Seq and gene network analysis uncover activation of an ABA-dependent signalosome during the cork oak root response to drought. Front Plant Sci 6:1195. doi:10.3389/fpls.2015.01195

    Article  PubMed  PubMed Central  Google Scholar 

  • Malajczuk N (1979) Biological suppression of Phytophthora cinnamomi in eucalyptus and avocados in Australia. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic, London

    Google Scholar 

  • Malajczuk N, McComb A (1979) The microflora of unsubersied roots of Eucalyptus calophylla R. Br. and Eucalytpus marginata Donn ex Sm. seedlings grown in soils suppressive and conducive to Phytophthora cinnamomi Rands. I. Rhizosphere bacteria, actinomycetes and fungi. Aust J Bot 27:235–254

    Article  Google Scholar 

  • Malcolm GM, López-Gutiérrez JC, Koide RT, Eissenstat DM (2008) Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Glob Chang Biol 14:1169–1180. doi:10.1111/j.1365-2486.2008.01555.x

    Article  Google Scholar 

  • Manos CH, Oh SH (2008) Phylogenetic relationships and taxonomic status of the paleoendemic Fagaceae of Western North America: recognition of a new genus. Madroño 55:181–190. doi:10.3120/0024-9637-55.3.181

    Article  Google Scholar 

  • Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379

    Article  Google Scholar 

  • Markkola AM, Kuikka K, Rautio P, Härmä E, Roitto M, Tuomi J (2004) Defoliation increases carbon limitation in ectomycorrhizal symbiosis of Betula pubescens. Oecologia 140:234–240. doi:10.1007/s00442-004-1587-2

    Article  PubMed  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92. doi:10.1038/nature06556

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038. doi:10.1038/nature08867

    Article  CAS  PubMed  Google Scholar 

  • Marx D (1972) Ectomycorrhizal and nonmycorrhizal shortleaf pine seedlings in soil with Phytophthora cinnamomi. Annu Rev Phytopathol 10:1472–1473

    Article  Google Scholar 

  • Milgroom MG, Wang KR, Zhou Y, Lipari SE, Kaneko S (1996) Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia 88:179–190. doi:10.2307/3760921

    Article  Google Scholar 

  • Mohan V, Nivea R, Menon S (2015) Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi. J Acad Ind Res 3:408–412

    CAS  Google Scholar 

  • Montecchio L, Causin R, Rossi S, Mutto Acordi S (2004) Changes in ectomycorrhizal diversity in a declining Quercus ilex coastal forest. Phytopathol Mediterr 43:26–34. doi:10.14601/Phytopathol_Mediterr-1721

    Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386. doi:10.1094/PHYTO-98-4-0380

    Article  CAS  PubMed  Google Scholar 

  • Moricca S, Ginetti B, Ragazzi A (2012) Species- and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathol Mediterr 51:587–598. doi:10.14601/Phytopathol_Mediterr-11705

    Google Scholar 

  • Moricca S, Franceschini A, Ragazzi A, Linaldeddu BT, Lancellotti E (2014) Studies on communities of endophytic (end) and ectomycorrhizal (ecm) fungi associated with oaks in pure and mixed stands. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes, a laboratory manual: Part B: Fungi

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S, Tyree MT, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings. Ann For Sci 57:305–312. doi:10.1051/forest:2000121

    Article  Google Scholar 

  • Nardini A, Lo Gullo MA, Trifilò P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: responses and adaptations. Environ Exp Bot 103:68–79. doi:10.1016/j.envexpbot.2013.09.018

    Article  Google Scholar 

  • Nixon KC, Crepet WL (1989) Trigonobalanus (Fagaceae): taxonomy status and phylogenetic relashionship. Am J Bot 76:826–841

    Article  Google Scholar 

  • Nuche P, Komac B, Camarero JJ, Alados CL (2014) Developmental instability as an index of adaptation to drought stress in a Mediterranean oak. Ecol Indic 40:68–75. doi:10.1016/j.ecolind.2013.12.023

    Article  Google Scholar 

  • Núñez JAD, Serrano JS, Barreal JAR, de Omeñaca González JAS (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manage 231:226–233. doi:10.1016/j.foreco.2006.05.052

    Article  Google Scholar 

  • Oh S, Manos PS (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451

    Google Scholar 

  • Oliveira RS, Franco AR, Vosátka M, Castro PML (2010) Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis 52:125–131. doi:10.1007/s13199-010-0092-0

    Article  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonising arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790. doi:10.1111/j.1365-2745.2006.01136.x

    Article  Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different mediterranean land-use backgrounds. PLoS One 7:1–9. doi:10.1371/journal.pone.0034847

    Article  CAS  Google Scholar 

  • Orgiazzi A, Dunbar MB, Panagos P, de Groot GA, Lemanceau P (2015) Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biol Biochem 80:244–250. doi:10.1016/j.soilbio.2014.10.014

    Article  CAS  Google Scholar 

  • Ortega A, Lorite J (2007) Macrofungi diversity in cork-oak and holm-oak forests in Andalusia (southern Spain); an efficient parameter for establishing priorities for its evaluation and conservation. Cent Eur J Biol 2:276–296. doi:10.2478/s11535-007-0015-0

    Google Scholar 

  • Palmer J, Lindner D, Volk T (2008) Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in western Wisconsin. Mycorrhiza 19:27–36. doi:10.1007/s00572-008-0200-7

    Article  PubMed  Google Scholar 

  • Peintner U, Iotti M, Klotz P, Bonuso E, Zambonelli A (2007) Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini? Environ Microbiol 9:880–889. doi:10.1111/j.1462-2920.2006.01208.x

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Leal JB, Abreu IA, Alabaça CS, Almeida MH, Almeida P, Almeida T et al (2014) A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics 15:371. doi:10.1186/1471-2164-15-371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietras M, Rudawska M, Leski T, Karliński L (2013) Diversity of ectomycorrhizal fungus assemblages on nursery grown European beech seedlings. Ann For Sci 70:115–121. doi:10.1007/s13595-012-0243-y

    Article  Google Scholar 

  • Plomion C, Bastien C, Bogeat-Triboulot MB, Bouffier L, Déjardin A, Duplessis S, Vacher C (2015) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann For Sci 73:77–103. doi:10.1007/s13595-015-0488-3

    Article  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417. doi:10.1016/j.soilbio.2006.08.008

    Article  CAS  Google Scholar 

  • Ragazzi A, Moricca S, Capretti P, Dellavalle I, Mancini F, Turco E (2001) Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol Mediterr 40:165–171. doi:10.14601/Phytopathol_Mediterr-1598

    Google Scholar 

  • Ragazzi A, Moricca S, Capretti P, Dellavalle I, Turco E (2003) Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. For Pathol 33:31–38. doi:10.1046/j.1439-0329.2003.3062003.x

    Google Scholar 

  • Ragazzi A, Moricca S, Dellavalle I (2004) Endophytism in forest trees. Accademia Italiana di Scienze Forestali, Firenze

    Google Scholar 

  • Ramirez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2009) Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Mol Ecol 18:3803–3815. doi:10.1111/j.1365-294X.2009.04317.x

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Valiente JA, Valladares F, Huertas AD, Granados S, Aranda I (2011) Factors affecting cork oak growth under dry conditions: local adaptation and contrasting additive genetic variance within populations. Tree Genet Genomes 7:285–295. doi:10.1007/s11295-010-0331-9

    Article  Google Scholar 

  • Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729. doi:10.1139/B04-128

    Article  Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023. doi:10.1111/j.1469-8137.2005.01382.x

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse MA (2011) Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Ann For Sci 68:57–68. doi:10.1007/s13595-010-0007-5

    Article  Google Scholar 

  • Robin C, Heiniger U (2001) Chestnut blight in Europe: diversity of Cryphonectria parasitica, hypovirulence and biocontrol. For Snow Landsc Res 76:361–367

    Google Scholar 

  • Robin C, Smith I, Hansen EM (2012) Phythophthora cinnamomi. For Phytophthoras 2(1). doi:10.5399/osu/fp.2.1.3041

  • Rocheta M, Sobral R, Magalhães J, Amorim MI, Ribeiro T, Pinheiro M, Egas C, Morais-Cecílio L, Costa MM (2014) Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber. Front Plant Sci 6:599. doi:10.3389/fpls.2014.00599

    Google Scholar 

  • Saravesi K, Markkola AM, Rautio P, Roitto M, Tuomi J (2008) Defoliation causes parallel temporal responses in a host tree and its fungal symbionts. Oecologia 156:117–123. doi:10.1007/s00442-008-0967-4

    Article  PubMed  Google Scholar 

  • Savoie J, Largeteau ML (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol Biotechnol 89:971–979. doi:10.1007/s00253-010-3022-4

    Article  CAS  PubMed  Google Scholar 

  • Schmitz S, Zini J, Chandelier A (2006) Involvement of Phytophthora species in the decline of beech Fagus sylvatica in Wallonia (Belgium). Commun Agric Appl Biol Sci 72(4):879–885

    Google Scholar 

  • Sebastiana M, Figueiredo A, Acioli B, Sousa L, Pessoa F, Baldi A, Pais MS (2009) Identification of plant genes involved on the initial contact between ectomycorrhizal symbionts (Castanea sativa—European chestnut and Pisolithus tinctorius). Eur J Soil Biol 45:275–282. doi:10.1016/j.ejsobi.2009.02.001

    Article  CAS  Google Scholar 

  • Sebastiana M, Pereira VT, Alcântara A, Pais MS, Silva AB (2013) Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New For 44:937–949. doi:10.1007/s11056-013-9386-4

    Article  Google Scholar 

  • Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo O (2014) Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 9:98376. doi:10.1371/journal.pone.0098376

    Article  CAS  Google Scholar 

  • Serrazina S, Santos C, Machado H, Pesquita C, Vicentini R, Pais MS, Costa R (2015) Castanea root transcriptome in response to Phytophthora cinnamomi challenge. Tree Genet Genomes 11:1–19. doi:10.1007/s11295-014-0829-7

    Article  Google Scholar 

  • Shi L, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.) changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12:303–311

    Article  CAS  PubMed  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805. doi:10.1111/j.1365-294X.2012.05538.x

    Article  CAS  PubMed  Google Scholar 

  • Smit E, Veenman C, Baar J (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol 45:49–57. doi:10.1016/S0168-6496(03)00109-0

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863. doi:10.1111/j.1469-8137.2007.02040.x

    Article  CAS  PubMed  Google Scholar 

  • Southworth D, Carrington EM, Frank JL, Gould P, Harrington CA, Devine WD (2009) Mycorrhizas on nursery and field seedlings of Quercus garryana. Mycorrhiza 19:149–158. doi:10.1007/s00572-008-0222-1

    Article  PubMed  Google Scholar 

  • Stark S, Kytöviita M-M (2005) Evidence of antagonistic interactions between rhizosphere microorganisms and mycorrhizal fungi associated with birch (Betula pubescens). Acta Oecol 28:149–155. doi:10.1016/j.actao.2005.03.007

    Article  Google Scholar 

  • Suz LM, Barsoum N, Benham S, Dietrich H-P, Fetzer KD, Fischer R, Ia PG, Gehrman J, Gofel FK, Mannunger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Anchez GS, Schrock HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23:5628–5644. doi:10.1111/mec.12947

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Herrmann S, Wubet T, Feldhahn L, Recht S, Kurth F, Mailänder S, Bönn M, Neef M, Angay O, Buscot F et al (2013) OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytol 199:529–540. doi:10.1111/nph.12317

    Article  CAS  PubMed  Google Scholar 

  • Taschen E, Sauve M, Taudiere A, Parlade J, Selosse MA, Richard F (2015) Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761. doi:10.1111/1462-2920.12741

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. doi:10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  • Teixeira RT, Fortes AM, Pinheiro C, Pereira H (2014) Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue. J Exp Bot 65:4887–4905. doi:10.1093/jxb/eru252

    Article  CAS  PubMed  Google Scholar 

  • Toju H, Sato H, Tanabe AS (2014) Diversity and spatial structure of belowground plant—fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants. PLoS One 9:24–26. doi:10.1371/journal.pone.0086566

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T (2011) Ecosystems and biodiversity hotspots in the Mediterranean basin threats and conservation efforts. Sci Adv Environ Toxicol Ecotoxicol Issues 10:1–24

    Google Scholar 

  • Van der Heijden MGA, Martin FM, Sanders IR (2015) Tansley review Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi:10.1111/nph.13288

    Article  CAS  PubMed  Google Scholar 

  • Vettraino AM, Barzanti GP, Bianco MC, Ragazzi A, Capretti P, Paoletti E, Luisi N, Anselmi N, Vannini A (2002) Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. For Pathol 32:19–28. doi:10.1046/j.1439-0329.2002.00264.x

    Google Scholar 

  • Voříšková J, Brabcová V, Cajthaml T, Baldrian P (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278. doi:10.1111/nph.12481

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Gao C, Guo L (2011) Ectomycorrhizae associated with Castanopsis fargesii (Fagaceae) in a subtropical forest. Mycol Prog 10:323–332. doi:10.1007/s11557-010-0705-2

    Article  Google Scholar 

  • Wheeler N, Sederoff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Genet Genomes 5:181–187. doi:10.1007/s11295-008-0180-y

    Article  Google Scholar 

  • Xie J, Jiang D (2014) New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68. doi:10.1146/annurev-phyto-102313-050222

    Article  CAS  PubMed  Google Scholar 

  • Yakhlef SB, Kerdouh B, Mousain D, Ducousso M, Duponnois R, Abourouh M (2009) Phylogenetic diversity of Moroccan cork oak woodlands fungi. Biotechnol Agron Soc 13:521–528

    CAS  Google Scholar 

  • Yun W, Hall IA (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82(8):1063–1073. doi:10.1139/b04-051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lino-Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reis, F., Tavares, R.M., Baptista, P., Lino-Neto, T. (2017). Mycorrhization of Fagaceae Forests Within Mediterranean Ecosystems. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. https://doi.org/10.1007/978-3-319-53064-2_6

Download citation

Publish with us

Policies and ethics