Skip to main content

A Study on Coexistence of Different Types of Synchronization Between Different Dimensional Fractional Chaotic Systems

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

In this study, robust approaches are proposed to investigate the problem of the coexistence of various types of synchronization between different dimensional fractional chaotic systems. Based on stability theory of linear fractional order systems, the co-existence of full state hybrid function projective synchronization (FSHFPS), inverse generalized synchronization (IGS), inverse full state hybrid projective synchronization (IFSHPS) and generalized synchronization (GS) is demonstrated. Using integer-order Lyapunov stability theory and fractional Lyapunov method, the co-existence of FSHFPS, inverse full state hybrid function projective synchronization (IFSHFPS), IGS and GS is also proved. Finally, numerical results are reported, with the aim to illustrate the capabilities of the novel schemes proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldham, K. B., & Spanier, J. (1974). The fractional calculus. Academic Press.

    Google Scholar 

  2. Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics. Springer.

    Google Scholar 

  3. Samko, S. G., Klibas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: theory and applications. Gordan and Breach.

    Google Scholar 

  4. Podlubny, I. (1999). Fractional differential equations. Academic Press.

    Google Scholar 

  5. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Elsevier.

    Google Scholar 

  6. Jumarie, G. (1992). A Fokker-Planck equation of fractional order with respect to time. Journal of Mathematica Physics, 33, 3536–3541.

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley.

    Google Scholar 

  8. Metzler, R., Glockle, W. G., & Nonnenmacher, T. F. (1994). Fractional model equation for anomalous diffusion. Physica A, 211, 13–24.

    Article  Google Scholar 

  9. Mainardi, F. (1997). Fractional calculus: some basic problems in continuum and statistical mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics. Springer.

    Google Scholar 

  10. Bode, H. W. (1949). Network analysis and feedback amplifier design. Tung Hwa Book Company.

    Google Scholar 

  11. Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors \(\left( \frac{1}{s}\right) ^{\frac{1}{n}}\) by a regular Newton process. IEEE Transactions on Circuit Theory, 11, 210–213.

    Article  Google Scholar 

  12. Torvik, P. J., & Bagley, R. L. (1984). On the appearance of the fractional derivative in the behavior of real materials. Transactions of the ASME, 51, 294–298.

    Article  MATH  Google Scholar 

  13. Nakagava, M., & Sorimachi, K. (1992). Basic characteristics of a fractance device. IEICE Transactions on Fundamentals, E75-A, 1814–1818.

    Google Scholar 

  14. Axtell, M., & Bise, E. M. (1990). Fractional calculus applications in control systems. Proceedings of the IEEE National Aerospace and Electronics Conference (pp. 563–566). New York.

    Google Scholar 

  15. Koeller, R. C. (1984). Application of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 51, 299–307.

    Google Scholar 

  16. Dorčák, L. (1994). Numerical models for the simulation of the fractional-order control systems, UEF-04-94, The Academy of Sciences. Košice, Slovakia: Inst. of Experimental Physic.

    Google Scholar 

  17. Bagley, R. L., & Torvik, P. J. (1994). On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 51, 294–298.

    MATH  Google Scholar 

  18. Oustaloup A. (1995). La derivation non entiere: theorie, synthese et applications. Hermes.

    Google Scholar 

  19. Parada, F. J. V., Tapia, J. A. O., & Ramirez, J. A. (2007). Effective medium equations for fractional Fick’s law in porous media. Physica A, 373, 339–353.

    Article  Google Scholar 

  20. Podlubny, I. (1999). Fractional-order systems and \(\mathbf{ PI}^{\lambda }\mathbf{D}^{\mu }\)-controllers. IEEE Transactions on Automatic Control, 44, 208–213.

    Article  MathSciNet  MATH  Google Scholar 

  21. Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (2000). Nonlinear noninteger order circuits and systems—An Introduction. World Scientific.

    Google Scholar 

  22. Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific.

    Google Scholar 

  23. Westerlund, S. (2002). Dead Matter Has Memory! Causal Consulting.

    Google Scholar 

  24. Pires, E. J. S., Machado, J. A. T., & de Moura, P. B. (2003). Fractional order dynamics in a GA planner. Signal Processing, 83, 2377–2386.

    Article  MATH  Google Scholar 

  25. Vinagre, B. M., Chen, Y. Q., & Petráš, I. (2003). Two direct Tustin discretization methods for fractional-order differentiator/integrator. Journal of The Franklin Institute, 340, 349–362.

    Article  MathSciNet  MATH  Google Scholar 

  26. Magin, R. L. (2006) Fractional calculus in bioengineering. Begell House.

    Google Scholar 

  27. Tseng, C. C. (2007). Design of FIR and IIR fractional order Simpson digital integrators. Signal Processing, 87, 1045–1057.

    Google Scholar 

  28. Da Graca, Marcos M., Duarte, F. B. M., & Machado, J. A. T. (2008). Fractional dynamics in the trajectory control of redundant manipulators. Communications in Nonlinear Science and Numerical Simulation, 13, 1836–1844.

    Article  Google Scholar 

  29. Soltan, A., Radwan, A. G., Soliman, A. M. (2013). Fractional order Butterworth filter: active and passive realizations. IEEE Journal of Emerging and Selected Topics in Circuits and Systems, 3:3, 346–354.

    Google Scholar 

  30. Soltan, A., Radwan, A. G., & Soliman, A. M. (2012). Fractional order filter with two fractional elements of dependent orders. Journal of Microelectronics, 43, 818–827.

    Article  Google Scholar 

  31. Radwan, A. G., & Fouda, M. E. (2013). Optimization of fractional-order RLC filters. Journal of Circuits, Systems, and Signal Processing, 32, 2097–2118.

    Article  MathSciNet  Google Scholar 

  32. Moaddy, K., Radwan, A. G., Salama, K. N., Momani, S., & Hashim, I. (2012). The fractional-order modeling and synchronization of electrically coupled neurons system. Computers and Mathematics with Applications, 64, 3329–3339.

    Article  MathSciNet  MATH  Google Scholar 

  33. Radwan, A. G., Moaddy, K., & Momani, S. (2011). Stability and nonstandard finite difference method of the generalized Chua’s circuit. Computers and Mathematics with Applications, 62, 961–970.

    Article  MathSciNet  MATH  Google Scholar 

  34. Radwan, A. G., Moaddy, K., Salama, K. N., Momani, S., & Hasim, I. (2014). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 5(1), 125–132.

    Google Scholar 

  35. Hartley, T., Lorenzo, C., & Qammer, H. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 42, 485–490.

    Google Scholar 

  36. Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1998). Bifurcation and chaos in noninteger order cellular neural networks. International Journal of Bifurcation and Chaos, 8, 1527–1539.

    Google Scholar 

  37. Ahmad, W. M., & Sprott, J. C. (2003). Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons & Fractals, 16, 339–351.

    Article  MATH  Google Scholar 

  38. Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91, 034101.

    Article  Google Scholar 

  39. Li, C., & Chen, G. (2004). Chaos and hyperchaos in fractional order Rössler equations. Physica A, 341, 55–61.

    Google Scholar 

  40. Li, C., & Chen, G. (2004). Chaos in the fractional order Chen system and its control. Chaos Solitons & Fractals, 22, 549–554.

    Article  MATH  Google Scholar 

  41. Ahmad, W. M. (2005). Hyperchaos in fractional order nonlinear systems. Chaos Solitons & Fractals, 26, 1459–1465.

    Article  MATH  Google Scholar 

  42. Gao, X., & Yu, J. (2005). Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons & Fractals, 24, 1097–1104.

    Article  MATH  Google Scholar 

  43. Lu, J. G., & Chen, G. (2006). A note on the fractional-order Chen system. Chaos Solitons & Fractals, 27, 685–688.

    Article  MATH  Google Scholar 

  44. Ge, Z. M., & Hsu, M. Y. (2007). Chaos in a generalized van der Pol system and in its fractional order system. Chaos Solitons & Fractals, 33, 1711–1745.

    Article  MATH  Google Scholar 

  45. Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applications, 325, 542–553.

    Article  MathSciNet  MATH  Google Scholar 

  46. Barbosa, R. S., Machado, J. A. T., Vinagre, B. M., & Calderón, A. J. (2007). Analysis of the Van der Pol oscillator containing derivatives of fractional order. Journal of Vibration and Control, 13, 1291–1301.

    Article  MATH  Google Scholar 

  47. Ge, Z. M., & Ou, C. Y. (2007). Chaos in a fractional order modified Duffing system. Chaos Solitons & Fractals, 34, 262–291.

    Article  MATH  Google Scholar 

  48. Chen, W. C. (2008). Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons & Fractals, 36, 1305–1314.

    Article  Google Scholar 

  49. Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos Solitons & Fractals, 38, 140–147.

    Article  Google Scholar 

  50. Petráš, I. (2009). Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dynamics, 57, 157–170.

    Article  MATH  Google Scholar 

  51. Petráš, I. (2010). A note on the fractional-order Volta’s system. Communications in Nonlinear Science and Numerical Simulation, 15, 384–393.

    Article  MathSciNet  MATH  Google Scholar 

  52. Deng, H., Li, T., Wang, Q., & Li, H. (2009). A fractional-order hyperchaotic system and its synchronization. Chaos Solitons & Fractals, 41, 962–969.

    Article  MATH  Google Scholar 

  53. Gejji, V. D., & Bhalekar, S. (2010). Chaos in fractional ordered Liu system. Computers & Mathematics with Applications, 59, 1117–1127.

    Article  MathSciNet  MATH  Google Scholar 

  54. Kiani, B. A., Fallahi, K., Pariz, N., & Leung, H. (2009). A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14, 863–879.

    Google Scholar 

  55. Liang, H., Wang, Z., Yue, Z., & Lu, R. (2012). Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika, 48, 190–205.

    MathSciNet  MATH  Google Scholar 

  56. Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13, 1441–1450.

    Article  MathSciNet  MATH  Google Scholar 

  57. Muthukumar, P., & Balasubramaniam, P. (2013). Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics, 74, 1169–1181.

    Article  MathSciNet  MATH  Google Scholar 

  58. Muthukumar, P., Balasubramaniam, P., & Ratnavelu, K. (2014). Synchronization of a novel fractional order stretch-twistfold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dynamics, 77, 1547–1559.

    Article  MathSciNet  MATH  Google Scholar 

  59. Radwan, A. G. (2013). On some generalized logistic maps with arbitrary power. Journal of Advanced Research (JAR), 4, 163–171.

    Article  Google Scholar 

  60. Radwan, A. G., Soliman, A. M., & EL-Sedeek A. L. (2003). MOS realization of the double scroll-like chaotic equation. IEEE Circuits and systems-I, 50(2), 285–288.

    Google Scholar 

  61. Radwan, A. G., Soliman, A. M., & EL-sedeek A. L. (2004). MOS realization of the modified Lorenz chaotic system. Chaos, Solitons & Fractals, 21, 553–561.

    Google Scholar 

  62. Radwan, A. G., Soliman, A. M., & EL-sedeek A. L. (2003). An inductorless CMOS realization of Chua’s circuit. Chaos, Solitons and Fractals, 18, 149–158.

    Google Scholar 

  63. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2007). 1-D digitally-controlled multi-scroll chaos generator. International Journal of Bifurcation and Chaos, 17(1), 227–242.

    Article  MATH  Google Scholar 

  64. Zidan, M. A., Radwan, A. G., & Salama, K. N. (2012). Controllable v-shape multi-scroll butterfly attractor: System and circuit implementation. Int.International Journal of Bifurcation and Chaos (IJBC), 22, 6.

    MATH  Google Scholar 

  65. Barakat, M. L., Mansingka, A. S., Radwan, A. G., & Salama, K. N. (2013). Generalized hardware post processing technique for chaos-based pseudo random number generators. ETRI Journal, 35(3), 448–458.

    Article  Google Scholar 

  66. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  67. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, Studies in computational intelligence (Vol. 581). Germany: Springer.

    MATH  Google Scholar 

  68. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.

    Google Scholar 

  69. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer. ISBN 978-3-319-11016-5.

    Google Scholar 

  70. Azar, A. T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series. USA: IGI Global. ISBN 9781466672482.

    Google Scholar 

  71. Zhu, Q., & Azar, A. T. (2015) Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing (Vol. 319). Springer-Verlag, Germany. ISBN: 978-3-319-12882-5.

    Google Scholar 

  72. Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). Germany: Springer. ISBN: 978-3-319-11172-8.

    Google Scholar 

  73. Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence book series. Springer.

    Google Scholar 

  74. Vaidyanathan, S., & Azar, A. T. (2015). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence book series. Springer.

    Google Scholar 

  75. Vaidyanathan, S., & Azar, A. T. (2015). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence book series. Springer.

    Google Scholar 

  76. Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence book series. Springer.

    Google Scholar 

  77. Vaidyanathan, S., Sampath, S., & Azar, A.T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.

    Google Scholar 

  78. Vaidyanathan, S., Azar, A. T., Rajagopal, K., & Alexander, P. (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. International Journal of Modelling. Identification and Control (IJMIC), 23(3), 267–277.

    Google Scholar 

  79. Vaidyanathan, S., & Azar, A. T. (2016). Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.

    Article  Google Scholar 

  80. Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In: A. T. Azar, & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Berlin/Heidelberg: Springer-Verlag GmbH. doi:10.1007/978-3-319-13132-0_2.

  81. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy Adaptive synchronization of uncertain fractional-order chaotic systems. In: A. T. Azar, & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.

    Google Scholar 

  82. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  83. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-d novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.

    Google Scholar 

  84. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.

    Google Scholar 

  85. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-d four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In: Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  86. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  87. Vaidyanathan, S., & Azar, A. T. (2016) adaptive backstepping control and synchronization of a novel 3-d jerk system with an exponential nonlinearity. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  88. Vaidyanathan, S., Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  89. Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica A, 353, 61–72.

    Article  Google Scholar 

  90. Li, C., & Zhou, T. (2005). Synchronization in fractional-order differential systems. Physica D, 212, 11–125.

    MathSciNet  Google Scholar 

  91. Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons & Fractals, 26, 1125–1133.

    Article  MATH  Google Scholar 

  92. Wang, J., Xiong, X., & Zhang, Y. (2006). Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A, 370, 279–285.

    Article  Google Scholar 

  93. Li, C. P., Deng, W. H., & Xu, D. (2006). Chaos synchronization of the Chua system with a fractional order. Physica A, 360, 171–185.

    Article  MathSciNet  Google Scholar 

  94. Peng, G. (2007). Synchronization of fractional order chaotic systems. Physics Letters A, 363, 426–432.

    Article  MathSciNet  MATH  Google Scholar 

  95. Sheu, L. J., Chen, H. K., Chen, J. H., & Tam, L. M. (2007). Chaos in a new system with fractional order. Chaos Solitons & Fractals, 31, 1203–1212.

    Article  Google Scholar 

  96. Yan, J., & Li, C. (2007). On chaos synchronization of fractional differential equations. Chaos Solitons & Fractals, 32, 725–735.

    Article  MathSciNet  MATH  Google Scholar 

  97. Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos Solitons & Fractals, 32, 751–757.

    Article  Google Scholar 

  98. Zhou, S., Li, H., Zhu, Z., & Li, C. (2008). Chaos control and synchronization in a fractional neuron network system. Chaos Solitons & Fractals, 36, 973–984.

    Article  MathSciNet  MATH  Google Scholar 

  99. Zhu, H., Zhou, S., & Zhang, J. (2009). Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons & Fractals, 39, 1595–1603.

    Article  MATH  Google Scholar 

  100. Liu, C., Liu, L., & Liu, T. (2009). A novel three-dimensional autonomous chaos system. Chaos Solitons & Fractals, 39, 1950–1958.

    Article  MATH  Google Scholar 

  101. Odibat, Z. (2012). A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Analysis: Real World Applications, 13, 779–789.

    Article  MathSciNet  MATH  Google Scholar 

  102. Chen, F., Xia, L., & Li, C. G. (2012). Wavelet phase synchronization of fractional-order chaotic systems. Chinese Physics Letters, 29, 070501–070506.

    Article  Google Scholar 

  103. Razminia, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23, 873–879.

    Article  Google Scholar 

  104. Al-sawalha, M. M., Alomari, A. K., Goh, S. M., & Nooran, M. S. M. (2011). Active anti-synchronization of two identical and different fractional-order chaotic systems. International Journal of Nonlinear Science, 11, 267–274.

    MathSciNet  MATH  Google Scholar 

  105. Si, G., Sun, Z., Zhang, Y., & Chen, W. (2012). Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analytics: Real World Applications 13, 1761–1771.

    Google Scholar 

  106. Agrawal, S. K., & Das, S. (2014). Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique. Mathematical Methods in the Applied Sciences, 37, 2164–2176.

    Google Scholar 

  107. Chang, C. M., & Chen, H. K. (2010). Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dynamics, 62, 851–858.

    Article  MathSciNet  MATH  Google Scholar 

  108. Velmurugan, G., & Rakkiyappan, R. (2016). Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dynamics, 83, 419–432.

    Article  MathSciNet  MATH  Google Scholar 

  109. Shao, S. Q. (2009). Controlling general projective synchronization of fractional order Rössler systems. Chaos Solitons & Fractals, 39, 1572–1577.

    Article  MATH  Google Scholar 

  110. Zhou, P., Kuang, F., & Cheng, Y. M. (2010). Generalized projective synchronization for fractional order chaotic systems. Chinese Journal of Physics, 48, 49–56.

    MathSciNet  Google Scholar 

  111. Zhou, P., & Zhu, W. (2011). Function projective synchronization for fractional-order chaotic systems. Nonlinear Analysis: Real World Applications, 12, 811–816.

    Article  MathSciNet  MATH  Google Scholar 

  112. Xi, H., Li, Y., & Huang, X. (2015). Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik, 126, 5346–5349.

    Article  Google Scholar 

  113. Zhang, X. D., Zhao, P. D., & Li, A. H. (2010). Construction of a new fractional chaotic system and generalized synchronization. Communications in Theoretical Physics, 53, 1105–1110.

    Google Scholar 

  114. Jun, W. M., & Yuan, W. X. (2011). Generalized synchronization of fractional order chaotic systems. International Journal of Modern Physics B, 25, 1283–1292.

    Article  MATH  Google Scholar 

  115. Yi, C., Liping, C., Ranchao, W., & Juan, D. (2013). Q-S synchronization of the fractional-order unified system. Pramana, 80, 449–461.

    Article  Google Scholar 

  116. Feng, H., Yang, Y., & Yang, S. P. (2013). A new method for full state hybrid projective synchronization of different fractional order chaotic systems. Applied Mechanics and Materials, 385–38, 919–922.

    Article  Google Scholar 

  117. Razminia, A. (2013). Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism. Indian Journal of Physics, 87, 161–167.

    Article  Google Scholar 

  118. Zhang, L., & Liu, T. (2016). Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters. Journal of Nonlinear Science and Applications, 9, 1064–1076.

    MathSciNet  MATH  Google Scholar 

  119. Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69, 247–261.

    Article  MathSciNet  MATH  Google Scholar 

  120. Xi, H., Yu, S., Zhang, R., & Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems. Optik, 125, 2036–2040.

    Article  Google Scholar 

  121. Li, D., Zhang, X. P., Hu, Y. T., & Yang, Y. Y. (2015). Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing, 167, 165–171.

    Article  Google Scholar 

  122. Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity, 21, 114–125.

    Article  MathSciNet  Google Scholar 

  123. Chen, L., Wu, R., He, Y., & Chai, Y. (2015). Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dynamics, 80, 51–58.

    Article  MathSciNet  MATH  Google Scholar 

  124. Liu, L., Ding, W., Liu, C., Ji, H., & Cao, C. (2014). Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dynamics, 76, 2059–2071.

    Article  MathSciNet  MATH  Google Scholar 

  125. Zhang, L., & Yan, Y. (2014). Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76, 1761–1767.

    Google Scholar 

  126. Odibat, Z., Corson, N., Alaoui, M. A. A., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20, 81–97.

    Article  MathSciNet  MATH  Google Scholar 

  127. Chen, X. R., & Liu, C. X. (2012). Chaos Synchronization of fractional order unified chaotic system via nonlinear control. International Journal of Modern Physics B, 25, 407–415.

    Article  MATH  Google Scholar 

  128. Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., & Leung, A. Y. T. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76, 905–914.

    Article  MathSciNet  Google Scholar 

  129. Agrawal, S. K., & Das, S. A. (2013). modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73, 907–919.

    Google Scholar 

  130. Yuan, W. X., & Mei, S. J. (2009). Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14, 3351–3357.

    Article  MATH  Google Scholar 

  131. Odibat, Z. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.

    Article  MathSciNet  MATH  Google Scholar 

  132. Zhou, P., & Bai, R. (2015). The adaptive synchronization of fractional-order chaotic system with fractional-order \(1<q<2\) via linear parameter update law. Nonlinear Dynamics, 80, 753–765.

    Google Scholar 

  133. Cafagna, D., & Grassi, G. (2012). Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rössler systems. Nonlinear Dynamics, 68, 117–128.

    Article  MathSciNet  MATH  Google Scholar 

  134. Peng, G., & Jiang, Y. (2008). Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Physics Letters A, 372, 3963–3970.

    Article  MathSciNet  MATH  Google Scholar 

  135. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2007). Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Physics Letters A, 365, 315–327.

    Article  Google Scholar 

  136. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2007). Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyperchaotic) systems. Physics Letters A, 361, 231–237.

    Article  MathSciNet  MATH  Google Scholar 

  137. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2008). Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. Communications in Nonlinear Science and Numerical Simulation, 13, 456–464.

    Article  MathSciNet  MATH  Google Scholar 

  138. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2008). Full state hybrid projective synchronization of a general class of chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 13, 782–789.

    Article  MathSciNet  MATH  Google Scholar 

  139. Cai, G., Yao, L., Hu, P., & Fang, X. (2013). Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems Series B, 18, 2019–2028.

    Article  MathSciNet  MATH  Google Scholar 

  140. Ouannas, A., & Grassi, G. (2016). Inverse full state hybrid projective synchronization for chaotic maps with different dimensions. Chinese Physics B, 25, 090503–090506.

    Article  Google Scholar 

  141. Wu, X. J., Lai, D. R., & Lu, H. T. (2012). Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dynamics, 69, 667–683.

    Article  MathSciNet  MATH  Google Scholar 

  142. Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional order chaos system. Computers Journal, 7, 519–1526.

    Google Scholar 

  143. Martínez-Guerra, R., & Mata-Machuca, J. L. (2014). Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dynamics, 77, 1237–1244.

    Article  MathSciNet  MATH  Google Scholar 

  144. Ouannas, A., & Odibat, Z. (2015). Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynamics, 81, 765–771.

    Article  MathSciNet  MATH  Google Scholar 

  145. Ouannas, A., & Odibat, Z. (2016). On inverse generalized synchronization of continuous chaotic dynamical systems. International Journal of Applied Mathematics and Computation, 2, 1–11.

    Article  MathSciNet  Google Scholar 

  146. Ouannas, A. (2016). Co-existence of various synchronization-types in hyperchaotic maps. Nonlinear Dynamics and Systems Theory, 16, 312–321.

    MathSciNet  Google Scholar 

  147. Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8.

    Google Scholar 

  148. Ouannas, A., Azar, A. T., & Sundarapandian, V. (2016). New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems. International Journal of Computer Applications in Technology (To be appear).

    Google Scholar 

  149. Ouannas, A., Azar, A. T., & Sundarapandian, V. (2016). A new fractional hybrid chaos synchronisation. International Journal of Modelling Identification and Control (To be appear).

    Google Scholar 

  150. Ouannas, A., Azar, A. T., & Sundarapandian, V. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 1–9.

    Google Scholar 

  151. Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent.II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.

    Article  Google Scholar 

  152. Matignon, D. (1996). Stability results of fractional differential equations with applications to control processing, In IMACS, IEEE-SMC, Lille, France.

    Google Scholar 

  153. Li, Y., Chen, Y., & Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Computers & Mathematics with Applications, 59, 1810–1821.

    Google Scholar 

  154. Chen, D., Zhang, R., Liu, X., & Ma, X. (2014). Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Communications in Nonlinear Science and Numerical Simulation, 19, 4105–4121.

    Google Scholar 

  155. Aguila-Camacho, N., Duarte-Mermoud, M. A., & Gallegos, J. A. (2014). Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19, 2951–2957.

    Article  MathSciNet  Google Scholar 

  156. Chen, W. C. (2008). Dynamics and control of a financial system with time-delayed feedbacks. Chaos Solitons & Fractals, 37, 1198–1207.

    Article  MATH  Google Scholar 

  157. Zhou, P., Wei, L. J., & Cheng, X. F. (2009). A novel fractional-order hyperchaotic system and its synchronization. Chinese Physics B, 18, 2674.

    Article  Google Scholar 

  158. Wang, M. J., & Wang, X. Y. (2010). Dynamic analysis of the fractional order Newton-Leipnik system. Acta Physica Sinica, 59, 01583–01587.

    Google Scholar 

  159. Li, Y. X., Tang, W. K. S., & Chen, G. R. (2005). Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos, 15, 3367–3375.

    Article  Google Scholar 

  160. Li, T. Z., Wang, Y., & Luo, K. (2014). Control of fractional chaotic and hyperchaotic systems based on a fractional order controller. Chinese Physics B, 23, 080501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G. (2017). A Study on Coexistence of Different Types of Synchronization Between Different Dimensional Fractional Chaotic Systems. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics