Skip to main content
Log in

Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the hybrid projective synchronization problem for a class of fractional-order memristor-based neural networks with time delays. First, we address the basic ideas of fractional-order memristor-based neural networks (FMNNs) with hub structure and time delays. After that we derive the response system can be synchronized from the corresponding drive system, that is, the response system can be synchronized with the projection of the drive system generated through a design scaling matrix which is known as hybrid projective synchronization. By applying the Filippovs solutions, differential inclusion theory, stability theorem of linear fractional-order systems with multiple time delays and employing suitable linear feedback control law, some new sufficient conditions are derived to guaranteeing the projective synchronization of addressed FMNNs with hub structure and time delays. The analysis in this paper is based on the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, a numerical example is presented to show the usefulness of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Driscoll, T., Quinn, J., Klein, S., Kim, H.T., Kim, B.J., Pershin, Y.V., Ventra, M.D., Basov, D.N.: Memristive adaptive filters. Appl. Phys. Lett. 97, 093502 (2010)

    Article  Google Scholar 

  2. Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    Article  Google Scholar 

  3. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  4. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  5. Tour, J.M., He, T.: The fourth element. Nature 453, 42–43 (2008)

    Article  Google Scholar 

  6. Wu, A., Zeng, Z.: Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 36, 1–10 (2012)

    Article  MATH  Google Scholar 

  7. Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phy. Lett. A 375, 1661–1665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rakkiyappan, R., Velmurugan, G., Cao, J.: Stability analysis of memristor-based fractional-order neural networks with different memductance functions. Cogn. Neurodyn. 9, 145–177 (2015)

  9. Qi, J., Li, C., Huang, T.: Stability of delayed memristive neural networks with time-varying impulses. Cogn. Neurodyn. 8, 429–436 (2014)

    Article  Google Scholar 

  10. Li, X., Rakkiyappan, R., Velmurugan, G.: Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf. Sci. 294, 645–665 (2015)

    Article  MathSciNet  Google Scholar 

  11. Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78, 2823–2836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rakkiyappan, R., Cao, J., Velmurugan, G.: Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 84–97 (2015)

    Article  MathSciNet  Google Scholar 

  13. Yang, X., Cao, J., Yu, W.: Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cogn. Neurodyn. 8, 239–249 (2014)

    Article  Google Scholar 

  14. Wu, A., Wen, S., Zeng, Z.: Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 183, 106–116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, A., Zeng, Z.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18, 373–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, N., Cao, J.: New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw. 61, 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, H., Li, R., Yao, R., Zhang, X.: Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays. Neurocomputing 149, 667–676 (2015)

    Article  Google Scholar 

  18. Wang, L., Shen, Y., Yin, Q., Zhang, G.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 2033–2042 (2015)

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  20. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 294–298 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    MATH  Google Scholar 

  22. Petras, I.: A note on the fractional-order cellular neural networks. In: International joint conference on neural networks, pp. 1021–1024 (2006)

  23. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Lam, J.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50, 547–551 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008)

    Article  Google Scholar 

  27. Boroomand, A., Menhaj, M.: Fractional-order Hopfield neural networks. Lect. Notes Comput. Sci. 5506, 883–890 (2009)

    Article  Google Scholar 

  28. Chen, L., Chai, Y., Wu, R., Ma, T., Zhai, H.: Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111, 190–194 (2013)

    Article  Google Scholar 

  29. Wu, R.C., Hei, X.D., Chen, L.P.: Finite-time stability of fractional-order neural networks with delay. Commun. Theor. Phys. 60, 189–193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, H., Yu, Y., Wen, G.: Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 55, 98–109 (2014)

    Article  MATH  Google Scholar 

  31. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    Article  MATH  Google Scholar 

  32. Wang, H., Yu, Y., Wen, G., Zhang, S.: Stability analysis of fractional-order neural networks with time delay. Neural Process. Lett. (2014). doi:10.1007/s11063-014-9368-3

  33. Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order neural networks with time delays. Mathematical Analysis and its Applications. In: Proceedings in Mathematics & Statistics, Springer, p. 143. doi:10.1007/978-81-322-2485-3

  34. Zhang, Z., Huang, J., Liu, Z., Sun, M.: Boundary stabilization of a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback. Abstr. Appl. Anal. 2014, Article ID: 102594, pp. 1–14 (2014)

  35. Zhang, Z., Liu, Z., Miao, X., Chen, Y.: Stability analysis of heat flow with boundary time-varying delay effect. Nonlinear Anal. Theor. 73, 1878–1889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Perora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, H., He, Z.S., Zhou, S.B.: Lag synchronization of the fractional-order system via nonlinear observer. Int. J. Mod. Phys. B 25, 3951–3964 (2011)

    Article  MATH  Google Scholar 

  38. Taghvafard, H., Erjaee, G.H.: Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079–4088 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, B., Jian, J., Yu, H.: Adaptive synchronization of fractional-order memristor-based Chua’s system. Syst. Sci. Control Eng. 2, 291–296 (2014)

    Article  Google Scholar 

  40. Wang, X.Y., He, Y.J.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372, 435–441 (2008)

    Article  MATH  Google Scholar 

  41. Kuntanapreeda, S.: Robust synchronization of fractional-order unified chaotic systems via linear control. Comput. Math. Appl. 63, 183–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3024–3045 (1999)

    Article  Google Scholar 

  43. Chee, C. Y., Xu, D.: Chaos-based M-nary digital communication technique using controller projective synchronization. In: IEE Proceedings G (Circuits, Devices and Systems) 153, pp. 357–360 (2006)

  44. Wang, S., Yu, Y., Wen, G.: Hybrid projective synchronization of time-delayed fractional-order chaotic systems. Nonlinear Anal. Hybrid Syst. 11, 129–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)

    Article  MATH  Google Scholar 

  46. Wang, S., Yu, Y.G., Diao, M.: Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys. A 389, 4981–4988 (2010)

    Article  Google Scholar 

  47. Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal. Real World Appl. 12, 811–816 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, X.Y., Zhang, X.P., Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69, 511–517 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen, J., Zeng, Z., Jiang, P.: Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)

    Article  MATH  Google Scholar 

  50. Bao, H.B., Cao, J.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)

    Article  MATH  Google Scholar 

  51. Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1, 1–8 (2011)

    MATH  Google Scholar 

  52. Aubin, J., Frankowsaka, H.: Set-Valued Analysis. Springer, New York (2009)

    Book  Google Scholar 

  53. Filippov, A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. 93, 99–128 (1960)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rakkiyappan.

Additional information

The work was supported by CSIR Research Project No. 25(0237)/14/EMR-II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmurugan, G., Rakkiyappan, R. Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn 83, 419–432 (2016). https://doi.org/10.1007/s11071-015-2337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2337-1

Keywords

Navigation