Skip to main content
Log in

Chaos in the fractional-order Volta’s system: modeling and simulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with a new fractional-order chaotic system. It is based on the concept of Volta’s system, where the mathematical model of Volta’s system contains fractional-order derivatives. This system has simple structure and can display a double-scroll attractor. The behavior of the integer-order and the fractional-order Volta’s system with total order less than three which exhibits chaos is presented as well. Computer simulations are cross-verified by the numerical calculation and the Matlab/Simulink models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcay, H., Malti, R.: On the completeness problem for fractional rationals with incommensurable differentiation orders. In: Proceedings of the 17th World Congress IFAC, pp. 15367–15371, Seoul, Korea, July 6–11 (2008)

  2. Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Bifurcation and chaos in noninteger order cellular neural networks. Int. J. Bifurc. Chaos 8(7), 1527–1539 (1998)

    Article  MATH  Google Scholar 

  3. Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Noninteger Order Circuits and Systems—An Introduction. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  4. Ahmad, W.M.: Hyperchaos in fractional-order nonlinear systems. Chaos Solitons Fractals 26, 1459–1465 (2005)

    Article  MATH  Google Scholar 

  5. Carlson, G.E., Halijak, C.A.: Approximation of fractional capacitors (1/s)1/n by a regular Newton process. In: Proceedings of the Sixth Midwest Symposium on Circuit Theory, Madison, Wisconsin, May 6–7 (1963)

  6. Dorčák, L.: Numerical models for simulation of the fractional-order control systems. UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia (1994)

  7. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, G.: Fractal systems as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional-order derivatives—An expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lu system. Physica A 353, 61–72 (2005)

    Article  Google Scholar 

  11. Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ford, N., Simpson, A.: The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Analysis Report 385, Manchester Centre for Computational Mathematics, Manchester (2001)

  14. Gao, X., Yu, J.: Chaos in the fractional-order periodically forced complex Duffing’s oscillators. Chaos Solitons Fractals 24, 1097–1104 (2005)

    Article  MATH  Google Scholar 

  15. Hao, B.: Elementary Symbolic Dynamics and Chaos in Dissipative Systems. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  16. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos on a fractional Chua’s system. IEEE Trans. Circ. Syst. Theory Appl. 42(8), 485–490 (1995)

    Article  Google Scholar 

  17. Hwang, Ch., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)

    Article  MathSciNet  Google Scholar 

  18. Li, Ch., Chen, G.: Chaos and hyperchaos in the fractional-order Rossler equations. Physica A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  19. Li, Ch., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27, 685–688 (2006)

    Article  MATH  Google Scholar 

  21. Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005)

    Article  MATH  Google Scholar 

  22. Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Chua’s circuits with a piecewise-linear nonlinearity. Int. J. Mod. Phys. B 19(20), 3249–3259 (2005)

    MATH  Google Scholar 

  23. Matignon, D.: Stability properties for generalized fractional differential systems. In: Proc. of Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp. 145–158 (1998)

  24. Nakagava, M., Sorimachi, K.: Basic characteristics of a fractance device. IEICE Trans. Fundam. E75-A(12), 1814–1818 (1992)

    Google Scholar 

  25. Nimmo, S., Evans, A.K.: The effects of continuously varying the fractional differential order of chaotic nonlinear systems. Chaos Solitons Fractals 10(7), 1111–1118 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  27. Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthese et Applications. Hermes, Paris (1995)

    MATH  Google Scholar 

  28. Petráš, I.: Control of fractional-order Chua’s system. J. Electr. Eng. 53(07–08), 219–222 (2002)

    Google Scholar 

  29. Petráš, I., Dorčák, L.: Fractional-order control systems: modelling and simulation. Fract. Calc. Appl. Anal. 6(2), 205–232 (2003)

    MATH  MathSciNet  Google Scholar 

  30. Petráš, I.: Method for simulation of the fractional-order chaotic systems. Acta Montanistica Slovaca 11(4), 273–277 (2006)

    Google Scholar 

  31. Petráš, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38(1), 140–147 (2008)

    Article  Google Scholar 

  32. Petráš, I.: Digital fractional-order differentiator/integrator—IIR type. MathWorks, Inc.: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3672, visited: May 26 (2008)

  33. Petráš, I.: Digital fractional-order differentiator/integrator—fir type. MathWorks, Inc.: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3673, visited: May 26 (2008)

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  35. Podlubny, I., Petráš, I., Vinagre, B.M., O’Leary, P., Dorčák, Ľ.: Analogue realization of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)

    Article  MATH  Google Scholar 

  36. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MATH  MathSciNet  Google Scholar 

  37. Podlubny, I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359–386 (2000)

    MATH  MathSciNet  Google Scholar 

  39. Valerio, D.: Toolbox ninteger for Matlab, v.2.3 (September 2005). web: http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm, visited: May 23 (2008)

  40. Vinagre, B.M., Chen, Y.Q., Petráš, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340, 349–362 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tavazoei, M.S., Haeri, M.: Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Process. 1(4), 171–181 (2007)

    Article  MathSciNet  Google Scholar 

  42. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional—Order systems. Phys. Lett. A 367, 102–113 (2007)

    Article  Google Scholar 

  43. Tavazoei, M.S., Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal. 69, 1299–1320 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, J.C.: Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. J. Electrochem. Soc. 134(8), 1915–1920 (1987)

    Article  Google Scholar 

  45. Westerlund, S.: Dead Matter Has Memory! Causal Consulting, Kalmar (2002)

    Google Scholar 

  46. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Petráš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petráš, I. Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn 57, 157–170 (2009). https://doi.org/10.1007/s11071-008-9429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9429-0

Keywords

Navigation