Skip to main content

The Use of Enzymes in Bioremediation of Soil Xenobiotics

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

Environmental pollution with toxic compounds has become one of the biggest ecological problems of the world today. Therefore, there is a growing interest in developing new, cost-effective, and eco-friendly remediation technologies that are capable of the partial or total recovery of a polluted environment, with particular emphasis on soils. Bioremediation that uses the catabolic potential of microorganisms can be efficiently used to clean up certain pollutants, but for chemicals that exhibit a high xenobiotic character (polyaromatic hydrocarbons, chlorophenols, dioxins) microorganisms can be ineffective. Among biological agents, enzymes have a great potential to effectively transform and detoxify soil pollutants. The use of enzymes may represent a good alternative for overcoming most of the disadvantages related to the use of microorganisms. They can be used under extreme conditions that limit microbial activity and are effective at low pollutant concentrations. Enzymatic methods generally have low-energy requirements, are easy to control, and have a minimal environmental impact. This review has examined the possibility of using enzymes as an element of soil bioremediation technology and the main requirements that must be fulfilled when using this type of technology. Moreover, some classes of enzymes, mainly oxidoreductases and hydrolases, which are capable of transforming soil xenobiotics into innocuous products effectively, are characterized. Both plant-derived and microbial enzymes are discussed and special attention was paid to laccases, peroxidases, tyrosinases, lipases, proteases, and phosphotriesterases as well as to nitrile- and cyanide-degrading enzymes, which have a great potential to transform xenobiotic compounds. The main advantages as well as the disadvantages of the application of enzymes in the bioremediation of polluted soils are specified. Finally, the future perspective for the in situ application of enzymes in bioremediation of polluted environment is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Akopyan TN, Braunstein AE, Goryachenkova EV (1975) Beta-cyanoalanine synthase: purification and characterization. Proc Natl Acad Sci USA 72:1617–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar A, Saleemuddin M (1998) Alkaline proteases: a review. Bioresour Technol 64:175–183

    Article  CAS  Google Scholar 

  • Asano Y, Fujishiro K, Tany Y, Yamada H (1982) Aliphatic nitrile hydratase from Arthrobacter sp. J-1: purification and characterization. Agric Biol Chem 46:1165–1174

    CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Bodalo A, Gomez JL, Gomez E, Bastida J, Maximo MF (2005) Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere 63:626–632

    Article  PubMed  CAS  Google Scholar 

  • Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127–128

    Article  CAS  PubMed  Google Scholar 

  • Brady D, Beeton A, Zeevaart J, Kgaje C, van Rantwijk F, Sheldon RA (2004) Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64:76–85

    Article  CAS  PubMed  Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116

    Article  Google Scholar 

  • Brysk MM, Ressler C (1970) γ-Cyano-α-L-aminobutyric acid, a new product of cyanide fixation in Chromobacterium violaceum. J Biol Chem 245:1156–1160

    CAS  PubMed  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein D, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Cabuk A, Taspinar A, Kolankaya UN (2006) Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol Lett 28:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Cameron MD, Aust SD (2001) Cellobiose dehydrogenase - An extracellular fungal flavocytochrome. Enzyme Microb Technol 28:129–138

    Article  CAS  PubMed  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Kao CM, Chen SC (2008) Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 71:133–139

    Article  CAS  PubMed  Google Scholar 

  • Chroma L, Mackova M, Kucerova P, in der Wiesche C, Burkhard J, Macek T (2002) Enzymes in plant metabolism of PCBs and PAHs. Acta Biotechnol 22(1-2):35–41

    Article  CAS  Google Scholar 

  • Cipollone R, Bigotti MG, Frangipani E, Ascenzi P, Visca P (2004) Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 325:85–90

    Article  CAS  PubMed  Google Scholar 

  • Cipollone R, Ascenzi P, Frangipani E, Visca P (2006) Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63:942–949

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14

    Article  CAS  PubMed  Google Scholar 

  • Colosio C, Tiramani M, Brambilla G, Colombi A, Moretto A (2009) Neurobehavioural effects of pesticides with special focus on organophosphorus compounds: which is the real size of the problem? Neurotoxicology 30(6):1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  CAS  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demarche P, Junghanns C, Nair RR, Agathos SN (2012) Harnessing the power of enzymes for environmental stewardship. Biotechnol Adv 30:933–953

    Article  CAS  PubMed  Google Scholar 

  • Dick WA, Tabatabai MA (1999) Use of immobilized enzymes for bioremediation. In: Segoe S (ed) Bioremediation of contaminated soils. Agronomy monograph 37. Soil Science Society of America, Madison, pp 315–338

    Google Scholar 

  • Dick RP, Sandor JA, Eash NS (1994) Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Perú. Agric Ecosyst Environ 50:123–131

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenic plants and entophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P 450 2E1. Proc Natl Acad Sci USA 97:6287–6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Dunnil PM, Fowden L (1965) Enzymatic formation of β-cyanoalanine from cyanide by E. coli extract. Nature 208:1206–1207

    Article  Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Application of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931

    Article  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  PubMed  Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236

    Article  CAS  PubMed  Google Scholar 

  • Edwin-Wosu NL, Nkang AE (2015) Evaluation of enzyme expression in a macrophytic treated crude oil soil habitat: implication for enhanced phytoremediation potential using transgenic botanicals. Insight Ecol 4:13–23

    Article  Google Scholar 

  • Efremenko E, Lyagin I, Votchitseva Y, Sirotkina M, Varfolomeyev S (2007) Polyhistidine-containing organophosphorus hydrolase with outstanding properties. Biocatal Biotransform 25:103–108

    Article  CAS  Google Scholar 

  • Ezzi IM, Pascual AJ, Gould JB, Lynch MJ (2003) Characterisation of the rhodanese enzyme in Trichoderma spp. Enzyme Microbial Technol 32:629–634

    Article  CAS  Google Scholar 

  • Fernández- Fernández M, Sanromán MA, Moldes D (2013) Recent development and applications of immobilized laccase. Biotechnol Adv 31:1808–1825

    Article  PubMed  CAS  Google Scholar 

  • French CJ, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 7:491–494

    Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Gianfreda L, Bollag JM (1996) Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York, pp 123–193

    Google Scholar 

  • Gianfreda L, Bollag JM (2002) Isolated enzymes for the bioremediation and detoxyfication of organic pollutants. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 495–538

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Heidelberg, pp 257–311

    Chapter  Google Scholar 

  • Gianfreda L, Rao MA (2008) Bonifica di suoli contaminati e depurazione dell’acqua. In: Gennari M, Trevisan M (eds) Agrofarmaci. Conoscenze per un Uso Sostenibile. Oasi Alberto Perdisa, Bologna, pp 521–564

    Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  PubMed  Google Scholar 

  • Gómez Jiménez RT, Moliterni E, Rodríguez L, Fernández FJ, Villaseñor J (2011) Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Proc Environ Sci 9:54–59

    Article  CAS  Google Scholar 

  • Gupta N, Balomajumder C, Agrwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione S-transferases. The first step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostabile enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Choi HT, Song HG (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42:94–98

    CAS  PubMed  Google Scholar 

  • Harcourt RL, Horne I, Sutherland TD, Hammock BD, Russell RJ, Oakeshott JG (2002) Development of a simple and sensitive fluorimetric method for isolation of coumaphos-hydrolysing bacteria. Lett Appl Microbiol 34:263–268

    Article  CAS  PubMed  Google Scholar 

  • Harvey PJ, Xiang M, Palmer JM (2002) Extra cellular enzymes in the rhizosphere. In: Proceeding of the Inter-Cost Workshop on soil-microbe-root interactions: maximising phytoremediation/bioremediation, Grainau, pp 23–25

    Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Hong MS, Hong SJ, Barhoumi R, Burghardt RC, Donnelly KC, Wild JR, Venkatraj V, Tiffany-Castiglioni E (2003) Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicol Appl Pharmacol 186:110–118

    Article  CAS  PubMed  Google Scholar 

  • Huertas MJ, Luque-Almagro VM, Martinez-Luque M, Blasco R, Moreno-Vivia C, Castillo F, Rolda MD (2006) Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem Soc Trans 34:152–155

    Article  CAS  PubMed  Google Scholar 

  • Iyer R, Iken B (2015) Protein enginnering of representive hydrolytic enzymes for remediation of organophosphates. Biochem Eng J 94:134–144

    Article  CAS  Google Scholar 

  • Jokanovic M, Prostran M (2009) Pyridinium oximes as cholinesterase reactivators. Structure – activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 16(17):2177–2188

    Article  CAS  PubMed  Google Scholar 

  • Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2011) Soil enzymes as indicators of soil quality. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Heidelberg, pp 119–148

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res ID 805187:11

    Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20(2):225–230

    Article  CAS  PubMed  Google Scholar 

  • Knutson K, Kirzan S, Ragauskas A (2005) Enzymatic biobleaching of two recalcitrant paper dyes with horseradish and soybean peroxidase. Biotechnol Lett 27:753–758

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172:4807–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Jin M, Weemhoff JL (2012) Cytochrome P450-mediated phytoremediation using transgenic plants: a need for engineered cytochrome P450 enzymes. J Pet Environ Biotechnol 3(5):1–5

    Article  CAS  Google Scholar 

  • Kunz DA, Wang CS, Che JL (1994) Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiology 140:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • Little RM, Anderson PM (1987) Structural properties of cyanase. J Biol Chem 262:10120–10126

    CAS  PubMed  Google Scholar 

  • Liu R, Dai Y, Sun L (2015) Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. PLoS One 10(3):e0120369. doi:10.1371/journal.pone.0120369

  • Luque-Almagro VM, Huertas MJ, Martínez-Luque M, Moreno-Vivián C, Dolores Roldan M, Jesus Garcıa-Gil L, Castillo F, Blasco R (2005a) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque-Almagro VM, Blasco R, Huertas MJ, Martínez-Luque M, Moreno-Vivián C, Castillo F, Rolda MD (2005b) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Trans 33:168–169

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  PubMed  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. BioResources 4:1694–1717

    Google Scholar 

  • Martinková L, Vejvoda V, Kaplan O, Kubáč D, Malandra A, Cantarella M, Bezouška K (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  PubMed  CAS  Google Scholar 

  • Meyers PR, Rawlings DE, Woods DR, Lindsey GG (1993) Isolation and characterization of a cyanide dihydratase for Bacillus pumilus C1. J Bacteriol 175:6105–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougin C, Jolivalt C, Briozo P, Madzak C (2003) Fungal laccases: from structure activity studies to environmental applications. Environ Chem Lett 1(2):145–148

    Article  CAS  Google Scholar 

  • Mougin C, Boukcim H, Jolivalt C (2009) Soil bioremediation strategies based on the use of fungal enzymes. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation, Soil biology, vol 17. Springer, Heidelberg, pp 123–149

    Chapter  Google Scholar 

  • Mukram I, As N, Kirankumar B, Monisha TR, Reddy PV, Karegoudar TB (2015) Isolation and identification of a nitrile hydrolyzing bacterium and simultaneous utilization of aromatic and aliphatic nitriles. Int Biodeterior Biodegrad 100:165–171

    Article  CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southernhybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchut-Mikołajczak O, Kwapisz E, Antczak T (2013) Enzymatic bioremediation of xenobiotics. Eng Prot Environ 16(1):39–55

    Google Scholar 

  • Nawaz SM, Chapatwala DK, Wolfram HJ (1989) Degradation of acetonitrile by Pseudomonas putida. Appl Environ Microbiol 55:2267–2274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotog O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    Article  CAS  PubMed  Google Scholar 

  • Novotný C, Vyas BRM, Erbanová P, Kubatová A, Šašek V (1997) Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol 42:136–140

    Article  Google Scholar 

  • Omura H, Ikemot M, Kobayash M, Shimizq S, Yoshida T, Nagasawa T (2003) Purification, characterization and gene cloning of thermostable O-acetyl-L-homoserine sulfhydrylase forming γ-cyano-α-aminobutyric acid. J Biosci Bioeng 96:53–58

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    Article  CAS  PubMed  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353

    Article  Google Scholar 

  • Regnery aus Trier J (2010) Organophosphates in precipitation, lake water, and groundwater from urban and remote areas. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften. Johann Wolfgang Goethe-Universität in Frankfurt am Main, p 133

    Google Scholar 

  • Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A (2006) Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut 170(1–4):3–15

    Article  CAS  Google Scholar 

  • Ryan BJ, Carolan N, Faga CO (2006) Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends Biotechnol 24:359–363

    Article  CAS  Google Scholar 

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russel RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott C, Begley C, Taylor MJ, Pandey G, Momiroski V, French N, Brearley C, Kotsonis SE, Selleck MJ, Carino FA, Bajet CM, Clarke C, Oakeshott JG, Russel RJ (2011) Free-enzyme bioremediation of pesticides. In: Goh KS, Bret B, Potter T, Gan J (eds) Pesticide mitigation strategies for surface water quality. ACS Symposium Series 1075. American Chemical Society, Washington, DC, p 155-174

    Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1985) Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Biotechnology 3:367–371

    Google Scholar 

  • Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B (2005) Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus. J Bacteriol 187:92–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha RK, Valani D, Sinha S, Singh S, Heart S (2009) Bioremediation of contaminated sites: a low-cost nature’s biotechnology for environmental clean up by versatile microbes, plants and earthworms. In: Faerber T, Herzog J (eds) Solid waste management and environmental remediation. Nova Science, New York, pp 1–72

    Google Scholar 

  • Sirotkina M, Lyagin I, Efremenko E (2012) Hydrolysis of organophosphorus pesticides in soil: new opportunities with ecocompatible immobilized His6-OPH. Int Biodeterior Biodegrad 68:18–23

    Article  CAS  Google Scholar 

  • Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y et al (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–142

    Article  CAS  PubMed  Google Scholar 

  • Spaczyński M, Seta-Koselska A, Patrzylas P, Betlej A, Skórzyńska-Polit E (2012) Phytodegradation and biodegradation in rhizosphere as efficient methods of reclamation of soil contaminated by organic chemicals (a review). Acta Agrophys 19(1):155–169

    Google Scholar 

  • Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434

    Article  Google Scholar 

  • Suneetha V, Khan ZA (2011) Actinomycetes: sources for soil enzymes. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Heidelberg, pp 259–269

    Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the bioremediation of organic pollutants. Appl Catal B Environ 46:1–15

    Article  CAS  Google Scholar 

  • Trapp S, Larsen M, Pirandello A, Danquah-Boakye J (2003) Feasibility of cyanide elimination using plants. Eur J Min Proc Environ Prot 3:128–137

    Google Scholar 

  • Tyagi M, da Foseca MM, Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Uchida E, Ouchi T, Suzuki Y, Yoshida T, Habe H, Yamaguchi I, Omori T, Nojiri H (2005) Secretion of bacterial xenobiotic-degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Environ Sci Technol 39:7671–7677

    Article  CAS  PubMed  Google Scholar 

  • Venkata Naga Raju E, Divakar G (2013) Production of keratinase by using Pseudomonas aeruginosa isolated from poultry waste. IJPCBS 3(1):9–86

    Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 163242:21

    Google Scholar 

  • Wang GD, Li QJ, Luo B, Chen XY (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via engineered secretory laccase. Nat Biotechnol 22:893–897

    Article  PubMed  CAS  Google Scholar 

  • Wanger M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052

    Article  Google Scholar 

  • Wenzel WW, Adriano DC, Salt D, Smith R (1999) Phytoremediation: a plant-microbe-based remediation system. In: Segoe S (ed) Bioremediation of contaminated soils, agronomy monograph, vol 37. Soil Science Society of America, Madison, pp 315–338

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  PubMed  Google Scholar 

  • Wilce MCJ, Parker MW (1994) Structure and function of glutathione S-transferases. Biochem Biophys Acta 1205:1–18

    CAS  PubMed  Google Scholar 

  • Williams RAM, Kelly SM, Mottram JC, Coombs GH (2003) 3-mercaptopyruvate sulfur transferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. J Biol Chem 278:1480–1486

    Article  CAS  PubMed  Google Scholar 

  • Yamaki T, Olikawa T, Ito K, Nakamura T (1997) Cloning and sequencing of a nitrile hydratase gene from Pseudonocardia thermophila, JCM3095. J Ferment Bioeng 83:474–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Piotrowska-Długosz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Piotrowska-Długosz, A. (2017). The Use of Enzymes in Bioremediation of Soil Xenobiotics. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_17

Download citation

Publish with us

Policies and ethics