Skip to main content

Soil Bioremediation Strategies Based on the Use of Fungal Enzymes

  • Chapter
  • First Online:
Advances in Applied Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

The pollution of soil due to chemical compounds is an important problem worldwide. For that reason, the development of bioremediation processes remains an important challenge. In that context, filamentous fungi and their enzymatic systems appear to be potent tools to decrease the levels of contaminants in soils, by contaminant degradation or stabilisation. The structures and modes of action of selected fungal enzymes, namely peroxidases and laccases, have been extensively studied and are now well-known. Nevertheless, some improvement of their catalytic characteristics can be attempted through genetic engineering, in order to develop specific properties. In addition, some research is still needed to overcome several of their limitations for their efficient use in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriansen K, van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2004) A zinc-adapted fungus protects pines from zinc stress. New Phytol 161:549–555

    Google Scholar 

  • Adriansen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284

    Google Scholar 

  • Ahn MY, Dec J, Kimb JE, Bollag JM (2002) Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 31:1509–1515

    Article  CAS  Google Scholar 

  • Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52:B49–B58

    CAS  Google Scholar 

  • Aitken MD, Long TC (2004) Biotransformation, biodegradation, and bioremediation of polycyclic aromatic hydrocarbons. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, Berlin, pp 83–124

    Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    CAS  Google Scholar 

  • Alcalde M, Bulter T, Zumarraga M, Garcia-Arellano H, Mencia M, Plou FJ, Ballesteros A (2005) Screening mutant libraries of fungal laccases in the presence of organic solvents. J Biomol Screen 10:624–631

    CAS  Google Scholar 

  • Alexander M (1999) Bioremediation technologies: in situ and solid phase. In: Alexander M (ed) Biodegradation and bioremediation. Academic, San Diego, pp 159–176

    Google Scholar 

  • Anastasi A, Varese GC, Bosco F, Chimirri F, Marchisio VF (2008) Bioremediation potential of basidiomycetes isolated from compost. Biores Technol doi:10.1016/j.biotech.2007.12.036

    Google Scholar 

  • Anke H, Weber R (2006) White-rot, chlorine and the environment — a tale of many twists. Mycologist 20:83–89

    Google Scholar 

  • Antorini M, Herpoel-Gimbert I, Choinowski T, Sigoillot JC, Asther M, Winterhalter K, Piontek K (2002) Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochim Biophys Acta 1594:109–114

    CAS  Google Scholar 

  • Aust SD (1989) Biodegradation of agrochemicals by use of white rot fungi. In: Hattori T (ed) Recent advances in microbial ecology. Scientific Societies Press, Kyoto, pp 529–533

    Google Scholar 

  • Baldrian P (2006) Fungal laccases — occurrence and properties. FEMS Microbiol Rev 30:215–242

    CAS  Google Scholar 

  • Baldrian P, Gabriel J (1997) Effect of heavy metals on the growth of selected wood-rotting basidiomycetes. Folia Microbiol 42:521–523

    CAS  Google Scholar 

  • Baldrian P, Gabriel J, Nerud F (1996) Effect of cadmium on the ligninolytic activity of Stereum hirsutum and Phanerochaete chrysosporium. Folia Microbiol 41:363–367

    CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white-rot fungi use to degrade pollutants. Environ Sci Technol 28:78A–86A

    CAS  Google Scholar 

  • BASOL (2008) Pollution des sols BASOL. http://basol.environnement.gouv.fr/tableaux/home.htm. Cited 20 April 2008

  • Bayman P, Radkar GV (1997) Transformation and tolerance of TNT (2,4,6-trinitrotoluene) by fungi. Int Biodeterior Biodegradation 39:45–53

    CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  Google Scholar 

  • Bennet JW, Hollrah P, Waterhouse A, Horvarth K (1995) Isolation of bacteria and fungi from TNT-contaminated composts and preparation of 14C-ring labelled TNT. Int Biodeterior Biodegradation 35:421–430

    Google Scholar 

  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Google Scholar 

  • Bhaumik S, Christodoulatos C, Korfiatis GP, Brodman BW (1997) Aerobic and anaerobic biodegradation of nitroglycerin in batch and packed bed bioreactors. Water Sci Technol 36:139–146

    CAS  Google Scholar 

  • Bodalo A, Gomez JL, Gomez E, Bastida J, Maximo MF (2005) Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere 63:626–632

    Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbondegrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    CAS  Google Scholar 

  • Bogan BW, Lamar RT, Burgos WD, Tien M (1999) Extent of humification of anthracene, fluoranthene, and benzo(alpha) pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol 28:250–254

    CAS  Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes: an in situ method using phenolic and anilinic compounds. Environ Sci Technol 26:1876–1881

    CAS  Google Scholar 

  • Braudeau E, Mohtar RH (2004) Water potential in non rigid unsaturated soil-water medium. Water Resour Res 40:W05108

    Google Scholar 

  • Braudeau E, Mohtar RH (2009) Modeling the soil system: bridging the gap between pedology and soil–water physics. Glob Planet Change J (Special issue) doi:10.1016/j.gloplacha.2008.12.002

    Google Scholar 

  • Brewer R (1964) Fabric and mineral analysis of soils. Wiley, New York

    Google Scholar 

  • Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–95. Erratum in: Appl Environ Microbiol 69:5037

    CAS  Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase mediator systems. J Biotechnol 53:163–202

    CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    CAS  Google Scholar 

  • Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Biores Technol 76:113–117

    CAS  Google Scholar 

  • Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of genus Pleurotus. Appl Microbiol Biotechnol 58:582–594

    CAS  Google Scholar 

  • Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    CAS  Google Scholar 

  • Colpaert JV, van Assche JA (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Funct Ecol 1:415–421

    Google Scholar 

  • Colpaert JV, van Assche JA (1992) The effects of cadmium and the cadmium–zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145:237–243

    CAS  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    CAS  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    CAS  Google Scholar 

  • Couto SR, Gundin M, Lorenzo M, Sanroman MA (2002) Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid state conditions. Process Biochem 38:249–255

    CAS  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36

    Google Scholar 

  • Diano N, Grano V, Fraconte L, Caputo P, Ricupito A, Attanasio A, Bianco M, Bencivenga U, Rossi S, Manco I, Mita L, Del Pozzo G, Mita DG (2007) Non-isothermal bioreactors in enzymatic remediation of waters polluted by endocrine disruptors: BPA as a model of pollutant. Appl Catal B Environ 69:252–261

    CAS  Google Scholar 

  • Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110

    CAS  Google Scholar 

  • Dubroca J, Brault A, Kollmann A, Touton I, Jolivalt C, Kerhoas L, Mougin C (2005) Biotransformation of nonylphenol surfactants in soils amended with contaminated sewage sludges. In: Lichtfouse E, Dudd S, Robert D (eds) Environmental Chemistry: green chemistry and pollutants in ecosystems. Springer, Berlin, pp 305–315

    Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    CAS  Google Scholar 

  • Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35:275–282

    CAS  Google Scholar 

  • Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 279:23472–23476

    CAS  Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component – a laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425

    CAS  Google Scholar 

  • EPA (2008) http://epa.gov/OUST/cat/biopiles.htm. Cited 20 April 2008

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    CAS  Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    CAS  Google Scholar 

  • Funk SB, Crawford DL, Crawford RL, Mead G, Davis-Hooker W (1995) Full-scale anaerobic bioremediation of trinitrotoluene contaminated soil. Appl Biochem Biotech 51:625–633

    Google Scholar 

  • Garavaglia S, Cambria MT, Miglio M, Ragusa S, Lacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enz Microb Technol 35:339–354

    CAS  Google Scholar 

  • Gianfreda L, Rao MA, Violante A (1991) Invertase (β-fructosidase): effects of montmorillonite, Al-hydroxide and Al(OH)x-montmorillonite complex on activity and kinetic properties. Soil Biol Biochem 23:581–587

    CAS  Google Scholar 

  • Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    CAS  Google Scholar 

  • Han MJ, Choi HT, Song HGJ (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. Microbiology 42:94–8

    CAS  Google Scholar 

  • Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloid Surface B 2:517–566

    CAS  Google Scholar 

  • Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, Bergbauer M, Szewzyk U, Martínez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146

    CAS  Google Scholar 

  • Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaetechrysosporium. Can J Microbiol 46:110–118

    CAS  Google Scholar 

  • Hu MR, Chao YP, Zhang GQ, Yang XQ, Xue ZQ, Qian SJ (2007) Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro. Biomol Eng 24:619–24

    CAS  Google Scholar 

  • Ikehata K, Buchanan ID, Smith DW (2004) Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Eng Sci 3:1–19

    CAS  Google Scholar 

  • Jackson MM, Hou LH, Banerjee HN, Sridhar R, Dutta SK (1999) Disappearance of 2,4-dinitrotoluene and 2-amino,4,6-dinitrotoluene by Phanerochaete chrysosporium under non-ligninolytic conditions. Bull Environ Contam Toxicol 62:390–396

    CAS  Google Scholar 

  • Jensen KA Jr, Bao W, Kawai S, Srebotnik E, Hammel KE (1996) Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl Environ Microbiol 62:3679–3686

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46:313–317

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  Google Scholar 

  • Johnsen AR, Karlson U (2007) Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Appl Microbiol Biotechnol 76:533–543

    CAS  Google Scholar 

  • Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456

    CAS  Google Scholar 

  • Jolivalt C, Brenon S, Caminade E, Mougin C, Pontie M (2000) Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterisation of the grafted support and application in removing a phenylurea pesticide in waste water. J Membr Sci 180:103–113

    CAS  Google Scholar 

  • Kahraman SS, Gurdal IH (2002) Effect of synthetic and natural culture media on laccase production by white rot fungi. Biores Technol 82:315–317

    Google Scholar 

  • Kiiskinen L, Saloheimo M (2004) Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the Ascomycete Melanocarpus albomyces. Appl Environ Microbiol 70:137–144

    CAS  Google Scholar 

  • Klonowska A, Gaudin C, Asso M, Fournel A, Réglier M, Tron T (2005) LAC3, a new low redox potential laccase from Trametes sp. strain C30 obtained as a recombinant protein in yeast. Enz Microb Technol 36:34–41

    CAS  Google Scholar 

  • Knutson K, Kirzan S, Ragauskas A (2005) Enzymatic biobleaching of two recalcitrant paper dyes with horseradish and soybean peroxidase. Biotechnol Lett 27:753–758

    CAS  Google Scholar 

  • Kollmann A, Boyer FD, Ducrot PH, Kerhoas L, Jolivalt C, Touton I, Einhorn J, Mougin C (2005) Oligomeric compounds formed from 2,5-xylidine (2,5-dimethylaniline) are potent enhancers of laccase production in Trametes versicolor ATCC 32745. Appl Microbiol Biotechnol 68:251–258

    CAS  Google Scholar 

  • Kulkarni K, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85:496–512

    CAS  Google Scholar 

  • Lenin L, Forchiassin F, Ramos AM (2002) Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94:377–383

    Google Scholar 

  • Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) “Yellow” laccase of Panus tigrinus oxidizes nonphenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    CAS  Google Scholar 

  • Lui E, Zhao AH, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enz Microb Technol 37:487–496

    Google Scholar 

  • Mc Laren AD, Peterson GH, Barshad I (1958) The adsorption of enzymes and proteins on clay minerals. IV. Kaolinite and montmorllonite. Soil Sci Soc Am Proc 22:239–244

    CAS  Google Scholar 

  • Mc Laren AD (1954) The adsorption and reactions of enzymes and proteins on kaolinite. J Phys Chem 58:129–137

    CAS  Google Scholar 

  • Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C (2006) Shifting the optimal pH of activity of a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84

    CAS  Google Scholar 

  • Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109:63–81

    CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin degrading heme peroxidases. Enz Microb Technol 30:425–444

    Google Scholar 

  • Mayer A, Staples RC (2002) Laccase: new function for an old enzyme. Phytochemistry 60:551–565

    CAS  Google Scholar 

  • Messerschmidt A (1997) Multi-copper oxidases. World Scientific, Singapore

    Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2007) Laccase induction in fungi and laccase/N–OH mediator systems applied in paper mill effluent. Biores Technol 98:158–164

    CAS  Google Scholar 

  • Mollea C, Bosco F, Ruggieri B (2005) Fungal biodegradation of naphtalene: microcosms studies. Chemosphere 60:633–643

    Google Scholar 

  • Mougin C, Kollmann A, Jolivalt C (2002) Enhanced production of laccase in the fungus T rametes versicolor by the addition of xenobiotics. Biotechnol Lett 24:139–142

    CAS  Google Scholar 

  • Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycycl Aromat Comp 22:1–33

    Google Scholar 

  • Mougin C, Jolivalt C, Malosse C, Sigoillot JC, Asther M, Chaplain V (2002) Interference of soil contaminants with laccase activity during the transformation of complex mixtures of polycyclic aromatic hydrocarbons in liquid media. Polycycl Aromat Comp 22:673–688

    CAS  Google Scholar 

  • Mougin C, Jolivalt C, Briozzo P, Madzak C (2003) Fungal laccases: from structure-activity studies to environmental applications. Env Chem Lett 1:145–148

    CAS  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, London, pp 125–194

    Google Scholar 

  • Nicell JA, Wright H (1997) A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme Microb Technol 21:302–310

    CAS  Google Scholar 

  • Nishino SF, Paoli JC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2–6 dinitrotoluene. Appl Environ Microbiol 66:2139–2147

    CAS  Google Scholar 

  • Norde W (1986) Adsoprtion of proteins from solution at the solid–liquid interface. Adv Colloid Interface Sci 25:267–340

    CAS  Google Scholar 

  • Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white-rot fungi. Biodegradation 10:159–168

    CAS  Google Scholar 

  • Nyanhongo GS, Rodríguez-Couto S, Guebitz GM (2006) Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64:359–370

    CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    CAS  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    CAS  Google Scholar 

  • Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R (2005) Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44:4267–4274

    CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  Google Scholar 

  • Pointing SB, Jones EBG, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144

    CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24

    CAS  Google Scholar 

  • Quiquampoix H (1987) A stepwise approach to the understanding of extracellular enzyme activity in soil. I. Effect of electrostatic interactions on the conformation of a β-D-glucosidase on different mineral surfaces. Biochimie 69:753–763

    CAS  Google Scholar 

  • Quiquampoix H (2000) Mechanisms of protein adsorption on surfaces and consequences for extracellular enzyme acitivity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 10. Marcel Dekker, New York, pp 171–206

    Google Scholar 

  • Quiquampoix H, Abadie J, Baron MH, Leprince F, Matumoto-Pintro PT, Ratcliffe RG, Staunton S (1995) Mechanisms and consequences of protein adsorption on soil mineral surfaces. In: Horbett TA, Brash JL (eds) Proteins at interfaces II. ACS Symposium Series 602, American Chemical Society, Washington, DC, A995, pp 321–333

    Google Scholar 

  • Rama R, Sigoillot JC, Chaplain V, Asther M, Jolivalt C, Mougin C (2001) Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycycl Aromat Comp 18:397–414

    CAS  Google Scholar 

  • Ramirez-Martinez JR, Mc Laren AD (1966) Some factors influencing the determination of phosphatase activity in native soils and in soils sterilized by irradiation. Enzymologia 31:23–38

    CAS  Google Scholar 

  • Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments: a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  Google Scholar 

  • Rodríguez-Couto S, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Google Scholar 

  • Romantschuk M, Sarand I, Petanen T, Peltola R, Jonsson-Vihanne M, Koivula T (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107:179–185

    CAS  Google Scholar 

  • Ruggaber TP, Talley JW (2006) Enhancing bioremediation with enzymatic processes: a review. Prac Period Hazard Toxic Radioact Waste Manage 10:73–85

    CAS  Google Scholar 

  • Ryan BJ, Carolan N, Faga CO (2006) Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends Biotechnol 24:359–363

    Google Scholar 

  • Ryan D, Leukes W, Burton S (2007) Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Biores Technol 98:579–587

    CAS  Google Scholar 

  • Sandwick RK, Schray KJ (1988) Conformational states of enzymes bound to surfaces. J Colloid Interface Sci 121:1–12

    CAS  Google Scholar 

  • Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel CAMJJ, Fournel A, Sigoillot JC, Asther M (2003) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64:346–352

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Saito T, Kato K, Yokogawa Y, Nishida M, Yamashida N (2004) Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J Biosci Bioeng 98:64–66

    CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    CAS  Google Scholar 

  • Sax IR, Lewis RJ (1999) Nitro-compounds of aromatic hydrocarbons. In: Lewis RJ (ed) Dangerous properties of industrial material, 7th edn., vol. II. Wiley, New York, pp 2534–2536

    Google Scholar 

  • Simpson JR, Evans WC (1953) The metabolism of nitrophenols by certain bacteria. Biochem J 55:XXIV

    CAS  Google Scholar 

  • Staunton S, Quiquampois H (1994) Adsorption and conformation of bovine serum albumine on montmorillonite: modification of the balance between hydrophobic and electrostatic interactions by protei methylation and pH variation. J Col Int Sci 166:89–94

    CAS  Google Scholar 

  • Tanaka T, Tomasaki T, Nose M, Tomidokoro N, Kadomura N, Fujii T, Taniguchi M (2001) Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp. in a rotating reactor. J Biosci Bioeng 92:312–316

    CAS  Google Scholar 

  • Tavares APM, Coelho MAZ, Coutinho JAP, Xavier AMRB (2005) Laccase improvement in submerged cultivation: induced production and kinetic modelling. J Chem Technol Biotechnol 80:669–676

    Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B Environ 46:1–15

    CAS  Google Scholar 

  • Tsutsumi Y, Haneda T, Nishida N (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    CAS  Google Scholar 

  • UNEP (2001) Stockholm convention on persistent organic pollutants. Stockholm, Sweden

    Google Scholar 

  • USFDA (2003) Agency Response letter GRAS Notice No. GRN 000122, http://www.cfsan.fda.gov, Cited 20 April 2008

  • Valkonen M, Ward M, Wang H, Penttila M, Saloheinmo M (2003) Improvement of foreign-protein production in Aspergillus niger var awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol 69:6979–6986

    CAS  Google Scholar 

  • Van Acken B, Godefroid LM, Peres CM, Naveau H, Agathos SN (1999) Mineralization of 14C-U-ring labelled 4-hydroxylamino- 2,6-dinitrotoluene by manganese-dependant peroxidase of the white-rot fungus Phlebia radiata. J Biotechnol 68:159–169

    Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    CAS  Google Scholar 

  • Wanger M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    CAS  Google Scholar 

  • Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Tech 38:291–316

    CAS  Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil in Yucheng. Soil Biol Biochem 40:789–796

    CAS  Google Scholar 

  • Ye J, Singh A, Ward OP (2004) Biodegradation of nitroaromatics and other nitrogen containing xenobiotics. World J Microbiol Biotechnol 20:117–135

    CAS  Google Scholar 

  • Yoshitake A, Katayama Y, Nakamura M, Iimura Y, Kawai S, Morohoshi N (1993) N-linked carbohydrate chains protect lacase III from proteolysis in Coriolus versicolor. J Gen Microbiol 139:179–185

    CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccase and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability. Biochim Biophys Acta 1292:303–311

    Google Scholar 

  • Xu F (1999) Laccases. In: Flickinger MC, Brew SW (eds) Encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 1545–1554

    Google Scholar 

  • Zumarraga M, Plou MJ, García-Arellano H, Ballesteros A, Alcalde M (2007) Bioremediation of polycyclic aromatic hydrocarbons by fungal laccases engineered by directed evolution. Biocat Biotransform 25:219–228

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mougin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mougin, C., Boukcim, H., Jolivalt, C. (2009). Soil Bioremediation Strategies Based on the Use of Fungal Enzymes. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_7

Download citation

Publish with us

Policies and ethics